Bitcoin Forum
October 03, 2025, 08:23:11 AM *
News: Latest Bitcoin Core release: 29.0 [Torrent]
 
  Home Help Search Login Register More  
  Show Posts
Pages: [1] 2 3 4 5 6 »
1  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 16, 2020, 07:18:57 PM
I would like to thank everyone who helped me understand. Sorry for being boring.
I'm really happy to finally understand how to duplicate points and also calculate addition points
The Bitcoin community is amazing!
In my opinion, the Bitcoin community has helped Bitcoin to be a success
2  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 15, 2020, 10:40:56 PM
-snip-
The correct is:112711660439710606056748659173929673102114977341539408544630613555209775888121

What did I do wrong?
HuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuh


Why do not you examine the messages above? There are two different formulas: one for duplication and another for addition.
To be honest your messages are very hard to read. It could be more helpful for you if you can ask the specific question you do not understand or have issues with.
SORRY! My English is bad and I'm not good at math or programming.
Duplicate point I already understood
That will be my last question.
What did I do wrong?
Point addition:(2G+1G =3G)

Why was my result not: 112711660439710606056748659173929673102114977341539408544630613555209775888121?

Order: 115792089237316195423570985008687907852837564279074904382605163141518161494337

Modulo: 115792089237316195423570985008687907853269984665640564039457584007908834671663

Private key:  0000000000000000000000000000000000000000000000000000000000000003

Point addition:(2G+1G =3G)
Compressed public key;
In decimal;
Equation:

c = (qy – py) / (qx – px)
rx = c^2 – px – qx

px = 89565891926547004231252920425935692360644145829622209833684329913297188986597
py = 12158399299693830322967808612713398636155367887041628176798871954788371653930
qx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
qy = 32670510020758816978083085130507043184471273380659243275938904335757337482424

c = 32670510020758816978083085130507043184471273380659243275938904335757337482424-
12158399299693830322967808612713398636155367887041628176798871954788371653930=
20512110721064986655115276517793644548315905493617615099140032380968965828494


c = 55066263022277343669578718895168534326250603453777594175500187360389116729240-
89565891926547004231252920425935692360644145829622209833684329913297188986597=
81292460333046534861896783477920749818876442289795948381273441455000762414306


c = 20512110721064986655115276517793644548315905493617615099140032380968965828494/
81292460333046534861896783477920749818876442289795948381273441455000762414306=
23578750110654438173404407907450265080473019639451825850605815020978465167024


c = 23578750110654438173404407907450265080473019639451825850605815020978465167024


rx = 23578750110654438173404407907450265080473019639451825850605815020978465167024^2 -
89565891926547004231252920425935692360644145829622209833684329913297188986597-
55066263022277343669578718895168534326250603453777594175500187360389116729240

rx = 25759636913902563110438328477658084082469757293658084474899962813078412260632-
34499628904269660561674201530767158034393542375844615658184142552908072257357

rx = 107052097246949097972335111955578833901346199583454032856173404268079174674938



Correct resultt:112711660439710606056748659173929673102114977341539408544630613555209775888121
3  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 15, 2020, 09:54:14 PM
Order: 115792089237316195423570985008687907852837564279074904382605163141518161494337

Modulo: 115792089237316195423570985008687907853269984665640564039457584007908834671663

Private key:  0000000000000000000000000000000000000000000000000000000000000003

Point addition:(2G+1G =3G)
Compressed public key;
In decimal;
Equation:

c = (qy – py) / (qx – px)
rx = c^2 – px – qx

px = 89565891926547004231252920425935692360644145829622209833684329913297188986597
py = 12158399299693830322967808612713398636155367887041628176798871954788371653930
qx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
qy = 32670510020758816978083085130507043184471273380659243275938904335757337482424

c = 32670510020758816978083085130507043184471273380659243275938904335757337482424-
12158399299693830322967808612713398636155367887041628176798871954788371653930=
20512110721064986655115276517793644548315905493617615099140032380968965828494


c = 55066263022277343669578718895168534326250603453777594175500187360389116729240-
89565891926547004231252920425935692360644145829622209833684329913297188986597=
81292460333046534861896783477920749818876442289795948381273441455000762414306


c = 20512110721064986655115276517793644548315905493617615099140032380968965828494/
81292460333046534861896783477920749818876442289795948381273441455000762414306=
23578750110654438173404407907450265080473019639451825850605815020978465167024


c = 23578750110654438173404407907450265080473019639451825850605815020978465167024


rx = 23578750110654438173404407907450265080473019639451825850605815020978465167024^2 -
89565891926547004231252920425935692360644145829622209833684329913297188986597-
55066263022277343669578718895168534326250603453777594175500187360389116729240

rx = 25759636913902563110438328477658084082469757293658084474899962813078412260632-
34499628904269660561674201530767158034393542375844615658184142552908072257357

rx = 107052097246949097972335111955578833901346199583454032856173404268079174674938


The correct is:112711660439710606056748659173929673102114977341539408544630613555209775888121

What did I do wrong?
HuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuhHuh
4  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 14, 2020, 03:08:32 PM


SORRY! I convert in decimal: 02f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9,
instead of: 0xf9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9
 Roll Eyes

It's both the same in BASE16.
The first one is public key with prefix ready for processing while the second has 0x prefix to tell that it's hexadecimal but you can tell that easily by looking at the symbols.

You can easily convert them if you want.
Just use whatever works best for you  Smiley

I still don't know what you are trying to do exactly.
I'm just trying to learn the math behind bitcoin! I was always curious to understand how public keys are created and how Bitcoin works etc ... I was able to understand how to double points and now I understand  addition points
I'm feeling like a SATOSHI NAKAMOTO LOL Cool
5  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 14, 2020, 02:43:58 PM
Private key 3 is 3 * G

Add the Generator 3 times.

0x02F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9

Point 1 {x: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
            y: 32670510020758816978083085130507043184471273380659243275938904335757337482424n}

X:  0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Y:  0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

Point 2 {x: 89565891926547004231252920425935692360644145829622209833684329913297188986597n,
            y: 12158399299693830322967808612713398636155367887041628176798871954788371653930n}

X:  0xc6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5
Y:  0x1ae168fea63dc339a3c58419466ceaeef7f632653266d0e1236431a950cfe52a

Point 3 {x: 112711660439710606056748659173929673102114977341539408544630613555209775888121n,
            y: 25583027980570883691656905877401976406448868254816295069919888960541586679410n}

X:  0xf9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9
Y:  0x388f7b0f632de8140fe337e62a37f3566500a99934c2231b6cb9fd7584b8e672
Corrected, thanks!
Now What do I do with:
X:  0xf9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9
Y:  0x388f7b0f632de8140fe337e62a37f3566500a99934c2231b6cb9fd7584b8e672
?

What do you want to do with it ?
You can turn it into uncompressed public key:

publicKey = '04' + X + Y
publicKey = 04f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9388f7b0f632de 8140fe337e62a37f3566500a99934c2231b6cb9fd7584b8e672

Or turn it into a even compressed public key:
publicKey = '02' + X
publicKey = 02f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9

Or turn it into a odd compressed public key:
publicKey = '03' + X
publicKey = 03f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9

One of the last two is invalid.
You have to look at the least significant bit of Y to see if its odd or even.

Y = 0x388F7B0F632DE8140FE337E62A37F3566500A99934C2231B6CB9FD7584B8E672
Y = 0b11100010001111011110110000111101100011001011011110100000010100000011111110001 1001101111110011000101010001101111111001101010110011001010000000010101001100110 0100110100110000100010001100011011011011001011100111111101011101011000010010111 0001110011001110010
The last bit is even so it's '02'

You can also convert it to WIF:

5HpHagT65TZzG1PH3CSu63k8DbpvD8s5ip4nEB3kEsreB1FQ8BZ uncompressed

KwDiBf89QgGbjEhKnhXJuH7LrciVrZi3qYjgd9M7rFU74sHUHy8S compressed

And you can calculate various addresses but that is far past private to pubkey  Smiley




SORRY! I convert in decimal: 02f9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9,
instead of: 0xf9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9
 Roll Eyes
Now I will try to calculate the private key 0000000000000000000000000000000000000000000000000000000000000005
6  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 14, 2020, 01:56:03 PM
Private key 3 is 3 * G

Add the Generator 3 times.

0x02F9308A019258C31049344F85F89D5229B531C845836F99B08601F113BCE036F9

Point 1 {x: 55066263022277343669578718895168534326250603453777594175500187360389116729240n,
            y: 32670510020758816978083085130507043184471273380659243275938904335757337482424n}

X:  0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Y:  0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

Point 2 {x: 89565891926547004231252920425935692360644145829622209833684329913297188986597n,
            y: 12158399299693830322967808612713398636155367887041628176798871954788371653930n}

X:  0xc6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5
Y:  0x1ae168fea63dc339a3c58419466ceaeef7f632653266d0e1236431a950cfe52a

Point 3 {x: 112711660439710606056748659173929673102114977341539408544630613555209775888121n,
            y: 25583027980570883691656905877401976406448868254816295069919888960541586679410n}

X:  0xf9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9
Y:  0x388f7b0f632de8140fe337e62a37f3566500a99934c2231b6cb9fd7584b8e672
Corrected, thanks!
 
X:  0xf9308a019258c31049344f85f89d5229b531c845836f99b08601f113bce036f9
Y:  0x388f7b0f632de8140fe337e62a37f3566500a99934c2231b6cb9fd7584b8e672

EDITED:THIS IS THE KEY PUBLIC OF THE PRIVATE KEY
0000000000000000000000000000000000000000000000000000000000000003
7  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 14, 2020, 12:54:27 PM
That's what I wanted! Could you make private key 3?
We must not forget that there are two formulas
The one you used to find the point corresponding to the private key: 2 (or rather 0000000000000000000000000000000000000000000000000000000000000002 to be more precise) it is Duplication of points.
You did it in your example with the base point--> 1 + 1 =2  (but that could be another point)
To go now with 3 we need to do --> 2 + 1 = 3 (we have now 2 différents points and we can't doubling them)

For that you need to use the second formula:

modulo = 115792089237316195423570985008687907853269984665640564039457584007908834671663
Px = 89565891926547004231252920425935692360644145829622209833684329913297188986597 (x coordinate point 2)
Py = 12158399299693830322967808612713398636155367887041628176798871954788371653930 (y coordinate point 2)
Qx = 55066263022277343669578718895168534326250603453777594175500187360389116729240 (x coordinate point 1) not because it is the base point, just because it is the point n°1
Qy = 32670510020758816978083085130507043184471273380659243275938904335757337482424 (y coordinate point 1)

dx = (Qx - Px) % modulo             --> 34499628904269660561674201530767158034393542375844615658184142552908072257357
dy = (Qy - Py) % modulo             --> 95279978516251208768455708490894263304954079172022948940317551626939868843169
c = dy * invert(dx) % modulo       --> 23578750110654438173404407907450265080473019639451825850605815020978465167024
Rx = (c*c - Px - Qx) % modulo     --> 112711660439710606056748659173929673102114977341539408544630613555209775888121 (x coordinate of point (2+1 =3)
Ry = (c*(Px - Rx) - Py) % modulo --> 25583027980570883691656905877401976406448868254816295069919888960541586679410   (y coordinate of point (2+1 =3)

Can't explain better



Order: 115792089237316195423570985008687907852837564279074904382605163141518161494337

Base Point: (55066263022277343669578718895168534326250603453777594175500187360389116729240, 32670510020758816978083085130507043184471273380659243275938904335757337482424)

Modulo: 115792089237316195423570985008687907853269984665640564039457584007908834671663

Private key:  0000000000000000000000000000000000000000000000000000000000000003

Point addition:(2G+1G =3G)
Compressed public key;
In decimal;
Equation:

c = (qy – py) / (qx – px)
rx = c^2 – px – qx

px = 89565891926547004231252920425935692360644145829622209833684329913297188986597
py = 12158399299693830322967808612713398636155367887041628176798871954788371653930
qx = 55066263022277343669578718895168534326250603453777594175500187360389116729240
qy = 32670510020758816978083085130507043184471273380659243275938904335757337482424

c = 32670510020758816978083085130507043184471273380659243275938904335757337482424-
12158399299693830322967808612713398636155367887041628176798871954788371653930=
20512110721064986655115276517793644548315905493617615099140032380968965828494


c = 55066263022277343669578718895168534326250603453777594175500187360389116729240-
89565891926547004231252920425935692360644145829622209833684329913297188986597=
81292460333046534861896783477920749818876442289795948381273441455000762414306


c = 20512110721064986655115276517793644548315905493617615099140032380968965828494/
81292460333046534861896783477920749818876442289795948381273441455000762414306=
23578750110654438173404407907450265080473019639451825850605815020978465167024


c = 23578750110654438173404407907450265080473019639451825850605815020978465167024


rx = 23578750110654438173404407907450265080473019639451825850605815020978465167024^2 -
89565891926547004231252920425935692360644145829622209833684329913297188986597-
55066263022277343669578718895168534326250603453777594175500187360389116729240

rx = 25759636913902563110438328477658084082469757293658084474899962813078412260632-
34499628904269660561674201530767158034393542375844615658184142552908072257357

rx = 107052097246949097972335111955578833901346199583454032856173404268079174674938


rx hex = 0xecad56ff86123a68f47514b195ab6837ba69c1fbdf0beb6339e6f3caead069fa


Now I will try to calculate the private key 0000000000000000000000000000000000000000000000000000000000000005
8  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 13, 2020, 05:59:16 PM
If the formula is always the same, All public keys will also always be the same! "Where am I wrong?

(dx, dy, c, R.x, R.y, Q.x Q.y, P.x, P.y)Can someone explain to me what are this?

I think Rx and Ry are the coordinates of the public key, right?


ok, I will try to explain as simply as possible because it is true that I myself struggled to understand the system.
So it is a question here of adding 2 points (not the same). In this example we use :

first point: (all values are in décimal for a better comprehension)

X coordinate: 21262057306151627953595685090280431278183829487175876377991189246716355947009 (it is Qx)
Y coordinate: 41749993296225487051377864631615517161996906063147759678534462689479575333124 (it is Qy)
The Private key for this point is 0000000000000000000000000000000000000000000000000000000000000008

second point to add:

X coordinate: 89565891926547004231252920425935692360644145829622209833684329913297188986597 (it is Px)
Y coordinate: 12158399299693830322967808612713398636155367887041628176798871954788371653930 (it is Py)
The Private key for this point is 0000000000000000000000000000000000000000000000000000000000000002

So to add the 1st point to the second we use the formula : (here modulo is 115792089237316195423570985008687907853269984665640564039457584007908834671663 )

dx = (Q.x - P.x) % modulo
dy = (Q.y - P.y) % modulo
c = dy * invert(dx) % modulo
R.x = (c*c - P.x - Q.x) % modulo
R.y = (c*(P.x - R.x) - P.y) % modulo

in our example we have

dx = (21262057306151627953595685090280431278183829487175876377991189246716355947009 - 89565891926547004231252920425935692360644145829622209833684329913297188986597) % modulo
dx = 47488254616920819145913749673032646770809668323194230583764443341328001632075

dy = (41749993296225487051377864631615517161996906063147759678534462689479575333124 - 12158399299693830322967808612713398636155367887041628176798871954788371653930) % modulo
dy = 29591593996531656728410056018902118525841538176106131501735590734691203679194

invert of dx = 70279122268919195963430815486314537773961171454828771794853116552210630553734

c = dy * invert(dx) % modulo
c = 16132032934385503768504319366562120314980927452732756733183380715276156205226

So the new point (8 + 2)

R.x = (c*c - P.x - Q.x) % modulo
R.x --> X coordinate of (8+2) = 72488970228380509287422715226575535698893157273063074627791787432852706183111

R.y = (c*(P.x - R.x) - P.y) % modulo
R.y --> Y coordinate of (8+2) = 62070622898698443831883535403436258712770888294397026493185421712108624767191

If we check these coordinates, we find that it corresponds to the private key: 000000000000000000000000000000000000000000000000000000000000000a (10)

There you go, I hope I was as clear as possible and apologies for my broken English ^^

[/quote]


That's what I wanted! Could you make private key 3?
9  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: September 13, 2020, 05:22:01 PM
I learned to double the point, but I cannot calculate the public keys of the private keys in sequence

Duplication of points;
Compressed public key;
In decimal;
Equation:
c = (3px^2 + a) / 2py
rx = c^2 – 2px

Prime Modulo: 115792089237316195423570985008687907853269984665640564039457584007908834671663

Base Point: (55066263022277343669578718895168534326250603453777594175500187360389116729240, 32670510020758816978083085130507043184471273380659243275938904335757337482424)

Order: 115792089237316195423570985008687907852837564279074904382605163141518161494337

Private key:  0000000000000000000000000000000000000000000000000000000000000002


c= 3px^2 + a) / 2py

c=(3*55066263022277343669578718895168534326250603453777594175500187360389116729240^2)/2*32670510020758816978083085130507043184471273380659243275938904335757337482424

c=(3*60300556597753154781239923047219078515410877540607532238537983597388018023497)/2*32670510020758816978083085130507043184471273380659243275938904335757337482424

c=65109580555943268920148784132969327692962647956182032676156366784255219398828/2*32670510020758816978083085130507043184471273380659243275938904335757337482424

c=65109580555943268920148784132969327692962647956182032676156366784255219398828/65341020041517633956166170261014086368942546761318486551877808671514674964848

c=91914383230618135761690975197207778399550061809281766160147273830617914855857

rx=(91914383230618135761690975197207778399550061809281766160147273830617914855857^2)-2*55066263022277343669578718895168534326250603453777594175500187360389116729240

rx=83906328733785496146839373207584853159875368071536834145227120626166587773414-2*55066263022277343669578718895168534326250603453777594175500187360389116729240

rx=83906328733785496146839373207584853159875368071536834145227120626166587773414-110132526044554687339157437790337068652501206907555188351000374720778233458480

rx=89565891926547004231252920425935692360644145829622209833684329913297188986597

rx Compressed in hex = 02c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5

Now i would like to understand how to do for private key 3
Can someone do a tutorial like I did IN DECIMAL OF PRIVATE KEY 3
10  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: May 15, 2020, 02:49:07 PM
Wait a minute, so are you guys suggesting that you can actually calculate or deduce the private keys of someone by just looking at the public key? I'm lost maybe a bit of clarification would help. Or I am not getting that the OP is trying to say.
No that's not actually going to happen. Because this is just one integer public key, but in reality there are more integer in your private key. No scripts can deduce the private keys of someone. Even if anyone wants to do this, he/she needs a quantum computer with a minimum of 1000 qubits to expose any private key from any algorithm. In this current time, only IBM has 50 qubits of a quantum computer and Google (cooperating with NASA) has 53 qubits of quantum computer. Thought D-wave have 2000 qubits of quantum computer, but that's used only for optimization not for general purpose. So, it's will take more time to break bitcoin or other crypto-currencies private key. Also by the time passed, there will be a solution for it too.  Cheesy
I agree with you!
11  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: May 15, 2020, 02:44:51 PM
Wait a minute, so are you guys suggesting that you can actually calculate or deduce the private keys of someone by just looking at the public key? I'm lost maybe a bit of clarification would help. Or I am not getting that the OP is trying to say.
I just want to understand the math behind Bitcoin in a simple way Wink
12  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: May 03, 2020, 02:58:48 PM
You can read this book, Mastering Bitcoin, of Andreas M. Antonopoulos, and the chapter 4 is what you need

Chapter 4: https://github.com/bitcoinbook/bitcoinbook/blob/develop/ch04.asciidoc
I read. Very interesting! Thanks, but I still have questions
13  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: May 03, 2020, 02:53:33 PM
-snip-
Thanks for the answer. I will correct my question.
I just wanted to understand the G + G2 point duplication part ... The public key of 2,
X =0279be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798.
But for me:
X = 02f37cccfdf3b97758ab40c52b9d0e160e0537f9b65b9c51b2b3e502b62df02f30

If you want to doule point P in order to receive R = P + P, you should make the following:

c = 3*P.x*Px*invert(2*P.y) % modulo
R.x = (c*c - 2*P.x) % modulo
R.y = (c*(P.x - R.x) - P.y) % modulo

modulo = 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F

For your case with P = G = Point (Gx, Gy) where:
Gx = 0x79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798
Gy = 0x483ada7726a3c4655da4fbfc0e1108a8fd17b448a68554199c47d08ffb10d4b8

We have the following:
invert(2*P.y) = 0xb7e31a064ed74d314de79011c5f0a46ac155602353dc3d340fbeaeec9767a6a6
c = 0xcb35b28428101a303eb9d1235992ac63f58857c2f631ee6936d3aebbeddcd1b1
R.x = (c*c - 2*Gx) % modulo = 0xc6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5
R.y = 0x1ae168fea63dc339a3c58419466ceaeef7f632653266d0e1236431a950cfe52a

So we have R.x and R.y of the public key 2G = G + G (public key for private key = 2), and it is written in compressed format like:
02c6047f9441ed7d6d3045406e95c07cd85c778e4b8cef3ca7abac09b95c709ee5
I have a question.
If the private key is 3 ... do I need to change the formula this way?
R = P+P+P
c = 4*P.x*Px*invert(3*P.y) % modulo
R.x = (c*c - 3*P.x) % modulo
14  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: May 03, 2020, 01:29:58 AM
I thank you very much!
I'm trying here, I would like to do and understand without scripts or programs. I want to learn manually. I am open to further explanation. Thank MrFreeDragon
15  Other / Off-topic / Re: Private key to public key (TUTORIAL) on: May 03, 2020, 12:43:48 AM
I'm doing this:

Private key 2:

G2 * 79be667ef9dcbbac55a06295ce870b07029bfcdb2dce28d959f2815b16f81798

Public key compressed: X = 02F37CCCFDF3B97758AB40C52B9D0E160E0537F9B65B9C51B2B3E502B62DF02F30

I'm really sad ... I'm trying to learn and the moderator deleted my previous post ... Disappointed! Thanks MrFreeDragon for the explanation


16  Bitcoin / Development & Technical Discussion / Re: Pollard's kangaroo ECDLP solver on: May 03, 2020, 12:06:13 AM
But with both signs (+-) or not?

Could you try with an average of 2^21 - 2^22 instead?
u try with an average of 2^21 - 2^22 instead?

Yes at the beginning I used the y sign to select positive or negative jump then I tried an otehr set of random negative jumps without success.
It seems that this "bownian motion" is rather tricky to tune.

Tomorrow, I'll try other things...


Only negative jumps? I would try with positive/negative jumps and a greater average (my sensation)
To me it looks promising. 1.50sqrt(N) would be amazing!
Another thing to pay attention to is: when we translate our interval, we have only 2^(n-1) x-coordinates, and then half DP. For the tuning it's like we worked in a 2^(n-1) space.


I was thinking another thing,
if you want to overcome/avoid the brownian-motion tuning problem,

go back and put together

1) the linearity (and therefore the simplicity) of the classic approach (that you used in the release 1.3)
2) the power of the symmetry

Exploiting the symmetry means that we use equivalence classes to increase the probability of a collision (same number of tries, half 'points'); in our case, given a point P(x,y), 'x' decides the width of the jump and 'y' only the direction.
In the secp256k1 there are 2 points that share the same 'x', (x,y) and (x,-y).

In a interval of consecutive points, all x-coordinates are different, but if we move the interval like we did it becomes symmetric.

The drawback of our approach is that the kangaroo, instead of going in only one direction, keep going back and forth, creating many loops. Besides, not only we don't know where a wild kangaroo is (obviously we don't know its position-private key), but we don't control even the direction of its motion (and often it comes out from the interval)


But this curve has another symmetry that respects the linearity (unlike the negative map that overturns the interval and the kangaroo algorithm): endomorphism.

There are 3 points with the same 'y' , that means that this curve has about 2^256 points and
 
1) 2^256 / 2 different x-coordinates
2) 2^256 / 3 different y-coordinates

Why don't we use the symmetry that mantains the linearity of the interval?

We can work on the y-coordinates, and a jump should be depend on 'y' and not on 'x'.
We set equivalence classes where [P] = {P, Q, R} if and only if  yP = yQ = yR

What is the relation between the private key of these points P, Q, R?

If P=k*G, then Q=k*lambda*G and R =k*lambda^2*G (endomorphism)
and P=(x,y) -> Q=(beta*x, y) -> R=(beta^2*x,y)

observation:

if P=k*G, i.e. k is the private key of P respect of the generator G, then
lambda*P = k*lambda*G, i.e. the private key of P'=lambda*P respect of the generator G'=lambda*G is always k.

In other words, if we know that k lies in [a,b], resolving the problem P=k*G is equivalent to resolve the problem P'=k*G'
The interval is the same (from the scalar's point of view) but there are actually 3 different intervals of points. They are all consecutive from a different generator's point of view:

           point                                scalar
[a*G,   (a+1)*G, ....,  b*G]     <-> [a,b]   interval 1
[a*G',  (a+1)*G', ....,  b*G']    <-> [a,b]   interval 2  where G'=lambda*G
[a*G'', (a+1)*G'', ...., b*G'']   <-> [a,b]   interval 3  where G''=lambda*G

We could work on  3 "spaces" simultaneously :

P=k*G, with all points with generator G   -> interval 1     jumps (1*G, 2*G, ,,,2^(n-1)*G)

P'=k*G' with all points with generator G' -> interval 2     jumps(lambda*G, lambda*2*G, .... lambda*2^(n-1)*G)

P''=k*G'' with all points with generator G'' -> interval 3  jumps(lambda^2*G, lambda^2*2*G, .... lambda^2*2^(n-1)*G)

if the movements of a kangaroo depends only by the y-coordinates, that means that if a kangaroo reach a point T in the first interval and another kangaroo reachs a point W in the second interval with the same y, we will have a collision!
From that point they will walk together along the same path (across the same equivalence classes) until they reach a DP (in this case a y-coordinate with some zero bits), we detect this collision.

EDIT:
We work in this way in a space of 3*2^n points (3 intervals), but with only 2^n y-coordinates, then we should have a collision with a higher probability.  WRONG

I just wanted to understand this: https://bitcointalk.org/index.php?topic=5245379.0

17  Other / Off-topic / OFF TOPIC on: May 02, 2020, 11:37:49 PM
HELLO PEOPLE!
I would like a good explanation of how public keys are generated.
EQUATION OR FORMULA

y^2 = x^3 + 7
P = k * G
X = c^2 – 2px
Y = c (px – rx) – py

Private key: 1
Public key compressed : X = 0279BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798

So it should be ...

Private key: 2
Public key compressed: X =02F37CCCFDF3B97758AB40C52B9D0E160E0537F9B65B9C51B2B3E502B62DF02F30

Why public key compressed of 2 is: X = 02C6047F9441ED7D6D3045406E95C07CD85C778E4B8CEF3CA7ABAC09B95C709EE5?



18  Bitcoin / Project Development / Re: Bitcoin Visual private key generator on: December 31, 2019, 08:58:31 PM
Very Good! I played a little...LOL
19  Local / Português (Portuguese) / Re: [ALERTA]MALWARE QUE ALTERA O ENDEREÇO BITCOIN PELO ENDEREÇO DE HACKER (ctrl + v) on: December 02, 2019, 02:45:39 AM
O virus foi para a quarentena e em seguida removi-lo junto com a pasta e seus registros. Scanniei novamente e meu antivirus não detectou mais nada. E trojan funciona offline?

Sim - funciona offline e realiza um report quando estiver online. Não é um bom sinal o antivirus não detectar nada e os endereços continuarem mudando,  significa que o trojan foi removido parcialmente ou existe outro que o antivirus não detecta. Talvez, o Malwarebytes resolva - você pode utilizar a versão trial que dura 14 dias - https://br.malwarebytes.com/trial/
Muito obrigado pelos seus conselhos. A melhor coisa a fazer é formatar mesmo! Provavelmente meu pc esta infectado. O estranho é que criei uma carteira na MEW e salvei a chave privada e endereço em um arquivo de texto nos meus documentos  sem proteção nehuma e depositei 0.146ETH apenas para colocar uma recarga de celular e não foi hackeado. Será que o possivel hacker só quer altas quantias ou esse virus apenas muda o endereço copiado? E detalhe que notei... EX: Se eu copio esse endereço 17ZLbrFm22eAoTMTME6P8kghJJq1Vd6GFm muda para 17xxxxxxxxxxxxxxxxxxxxxxxxxm as 2 primeiras e a ultima letra ou numero são iguais ao endereço original... provavelmente o virus tem um banco de dados e quando o endereço copiado tem o inicio e o fim igual a algum endereço da lista do hacker, ele é trocado automaticamente.
Mais uma vez obrigado! Boa noite.
20  Local / Português (Portuguese) / Re: [ALERTA]MALWARE QUE ALTERA O ENDEREÇO BITCOIN PELO ENDEREÇO DE HACKER (ctrl + v) on: December 02, 2019, 02:14:14 AM
Sempre fui muito bem cuidadoso com meu pc e principalmente com as minhas carteiras btc e eth. Mas alguns dias notei que meu pc estava lento e quando copiava algum endereço btc ou eth para enviar ou apenas para pesquisar na blockchain, as vezes ele era automaticamente trocado por outro endereço desconhecido. Primeira coisa que fiz foi scannear meu pc, tinha um trojan! removi, mas o problema continua. Desistalei uma extensão do meu navegador e o problema continua, naveguei pelo modo anonimo e continua. A ultima tentativa foi testar endereços offline e acreditem, o problema continua!!!!!!Ja estou ficando paranoico! que diabos é isso? Será que não removi corretamente o virus? Será um script? Um tipo especial de virus? Ou falha no windows, que dependendo da sequência do endereço, copia errado?  Gostaria de saber as suas opiniões.

O Trojan que troca o endereço não foi removido. Recomendo que salve a wallet.dat em um lugar seguro e evite abrir sua carteira em seu PC - o trojan além de alterar o endereço pode ter outras funcionalidades, como: copiar as chaves privadas e senhas utilizadas. Até tem como evitar a troca de endereço utilizando um autocompletar com obfuscação, mas como seu sistema já está comprometido a melhor atitude a se fazer é formatar e fazer uma instalação limpa.

O virus foi para a quarentena e em seguida removi-lo junto com a pasta e seus registros. Scanniei novamente e meu antivirus não detectou mais nada. E trojan funciona offline?
Pages: [1] 2 3 4 5 6 »
Powered by MySQL Powered by PHP Powered by SMF 1.1.19 | SMF © 2006-2009, Simple Machines Valid XHTML 1.0! Valid CSS!