Bitcoin Forum
May 04, 2024, 06:01:11 AM *
News: Latest Bitcoin Core release: 27.0 [Torrent]
 
   Home   Help Search Login Register More  
Pages: [1] 2 3 »  All
  Print  
Author Topic: the fastest possible way to mass-generate addresses in Python  (Read 1209 times)
citb0in (OP)
Hero Member
*****
Offline Offline

Activity: 658
Merit: 656


Bitcoin g33k


View Profile
December 27, 2022, 07:51:03 PM
Last edit: January 01, 2023, 06:12:06 PM by citb0in
Merited by BTCW (5), hugeblack (4), witcher_sense (4), d5000 (3), ABCbits (2)
 #1

Hello everybody,

in the last days I am trying various approaches in Python to generate random private keys (hex) and the corresponding bitcoin address (optionally uncompressed, compressed, bech32 or mixed) as efficiently as possible and with good performance. There are several different approaches. I am actually very satisfied with the "bit" library from Ofek, because it is the fastest I experienced so far. However, if you also want to generate bech32 addresses, you have to do some manual extra work and the speed advantage of bit is then lost. So, as a very good and satisfying average I find the use of fastecdsa and iceland2k14/secp256k1 very fast.

EDIT:
Note1:
I didn't know that the Python library iceland2k14/secp256k1 was written natively in C++ and is just included in Python. Also, this library is closed-source, which means the source code is not known. So far, no security vulnerabilities have become known in this regard, but this point still deserves attention. There are some tools in the Bitcoin community that use this library for fast calculations.

Note2:
As I progressed, I found that the Python library fastecdsa is too oversized for generating random private keys and is not optimal in terms of performance. The secure Python library "secrets" on the other hand is fast when choosing randomness but also fast. It results in over +32 % better performance.


In several of my python programs I am testing, I have integrated a performance counter, which shows me the total number of addresses and the calculated rate (addresses/sec) while the program is running. However, I have taken this out in this examples to keep the code as simple and clear as possible. For relative ease of comparison, I do create 1 million randomly generated keys from which the Bech32 Bitcoin address (prefix 'bc1q' is then calculated. I write the output into a file, so I can check it afterwards to ensure everything went correct and the data is correct. I "time" the Python program to see how long it took to create the 1 million addresses. Let's get into it...

Here is an example which generated bech32 addresses:
Code:
#!/usr/bin/env python3
# 2022/Dec/26, citb0in
from fastecdsa import keys, curve
import secp256k1 as ice

# Set the number of addresses to generate
num_addresses = 1000000

# Open a file for writing
with open('addresses_1M.out', 'w') as f:
  # Generate and write each address to the file
  for i in range(num_addresses):
    prvkey_dec   = keys.gen_private_key(curve.P256)
    addr = ice.privatekey_to_address(2, True, prvkey_dec)
    f.write(f'{addr}\n')

It took 82 seconds to generate those 1 million addresses. This is a rate about 12,195 addresses/sec which is way too slow.

Quote
real   1m22,192s
user   1m21,461s
sys   0m0,640s

I often read about numpy and from what I could find on the internet about it, it sounded interesting. So I tried to rewrite the code to use numpy and compare the results.

Code:
#!/usr/bin/env python3
# 2022/Dec/26, citb0in
import numpy as np
import fastecdsa.keys as fkeys
import fastecdsa.curve as fcurve
import secp256k1 as ice

# how many addresses to generate
num_addresses = 1000000

# Generate a NumPy array of random private keys using fastecdsa
private_keys = np.array([fkeys.gen_private_key(fcurve.P256) for _ in range(num_addresses)])

# Use secp256k1 to convert the private keys to addresses
addresses = np.array([ice.privatekey_to_address(2, True, dec) for dec in private_keys])

# Write the addresses to a file
np.savetxt('addresses_numpy.out', addresses, fmt='%s')

Quote
real   1m19,636s
user   1m18,826s
sys   0m1,027s

As you can easily see, this did not bring any speed advantage, if you disregard the 1-2sec difference.

However, what caused significant speed boost was the attempt to distribute the program code into several threads and thus enable parallel processing. As I didn't see any disadvantage by using numpy I kept the numpy part in the code. Here is the extended python code:
Code:
#!/usr/bin/env python3
# 2022/Dec/26, citb0in
import threading
import numpy as np
import fastecdsa.keys as fkeys
import fastecdsa.curve as fcurve
import secp256k1 as ice

# Set the number of addresses to generate and the number of threads to use
num_addresses = 1000000
num_threads = 16

# Divide the addresses evenly among the threads
addresses_per_thread = num_addresses // num_threads

# Create a list to store the generated addresses
addresses = []

# Define a worker function that generates a batch of addresses and stores them in the shared list
def worker(start, end):
  # Generate a NumPy array of random private keys using fastecdsa
  private_keys = np.array([fkeys.gen_private_key(fcurve.P256) for _ in range(start, end)])

  # Use secp256k1 to convert the private keys to addresses
  thread_addresses = np.array([ice.privatekey_to_address(2, True, dec) for dec in private_keys])

  # Add the addresses to the shared list
  addresses.extend(thread_addresses)

# Create a list of threads
threads = []

# Create and start the threads
for i in range(num_threads):
  start = i * addresses_per_thread
  end = (i+1) * addresses_per_thread
  t = threading.Thread(target=worker, args=(start, end))
  threads.append(t)
  t.start()

# Wait for the threads to finish
for t in threads:
  t.join()

# Write the addresses to a file
np.savetxt('addresses_1M_multithreaded.txt', addresses, fmt='%s')

My system has a total of 16 threads available, so I distributed the load across all threads for that test. Now look at this:
Code:
$ time python3 create_1M_addresses_using_fastecdsa_and_ice_numpy_multithreaded.py

Quote
real   0m19,764s
user   0m38,147s
sys   0m6,367s

It took only 20 seconds to generate 1 million addresses. That is equal to the rate of 50.000 addresses/sec. Much better but I think it's still too slow.

I did realize through Linux tool "htop" that the 16 available threads on my machine were not utilized all and not fully with 100%. So the multithreading part seemed to work ok, but not as I expected. So I looked for more ways to properly distribute the load and found what I was looking for:

Code:
#!/usr/bin/env python3
# 2022/Dec/26, citb0in
import concurrent.futures
import os
import numpy as np
import fastecdsa.keys as fkeys
import fastecdsa.curve as fcurve
import secp256k1 as ice

# Set the number of addresses to generate
num_addresses = 1000000

# Define a worker function that generates a batch of addresses and returns them
def worker(start, end):
  # Generate a NumPy array of random private keys using fastecdsa
  private_keys = np.array([fkeys.gen_private_key(fcurve.P256) for _ in range(start, end)])

  # Use secp256k1 to convert the private keys to addresses
  thread_addresses = np.array([ice.privatekey_to_address(2, True, dec) for dec in private_keys])

  return thread_addresses

# Use a ProcessPoolExecutor to generate the addresses in parallel
with concurrent.futures.ProcessPoolExecutor() as executor:
  # Divide the addresses evenly among the available CPU cores
  addresses_per_core = num_addresses // os.cpu_count()

  # Submit a task for each batch of addresses to the executor
  tasks = []
  for i in range(os.cpu_count()):
    start = i * addresses_per_core
    end = (i+1) * addresses_per_core
    tasks.append(executor.submit(worker, start, end))

  # Wait for the tasks to complete and retrieve the results
  addresses = []
  for task in concurrent.futures.as_completed(tasks):
    addresses.extend(task.result())

# Write the addresses to a file
np.savetxt('addresses_1M_with_ProcessPool.txt', addresses, fmt='%s')

Quote
real   0m4,768s
user   0m54,444s
sys   0m1,894s

Perfect! Now I'm under 5 seconds for 1 million addresses. That's a rate of roughly 208,000 addresses/sec
How can we further improve the performance without using GPU? Is there anything else you can suggest, that will speed up the process?
Let's make a contest-like game. Create a simple code like this and try to beat the high score of currently 4.7 seconds for 1million bech32 addresses without using GPU.

The next step would be ==> how can we shuffle this code to the GPU for ultra-fast performance ?

.
.HUGE.
▄██████████▄▄
▄█████████████████▄
▄█████████████████████▄
▄███████████████████████▄
▄█████████████████████████▄
███████▌██▌▐██▐██▐████▄███
████▐██▐████▌██▌██▌██▌██
█████▀███▀███▀▐██▐██▐█████

▀█████████████████████████▀

▀███████████████████████▀

▀█████████████████████▀

▀█████████████████▀

▀██████████▀▀
█▀▀▀▀











█▄▄▄▄
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
.
CASINSPORTSBOOK
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀▀█











▄▄▄▄█
1714802471
Hero Member
*
Offline Offline

Posts: 1714802471

View Profile Personal Message (Offline)

Ignore
1714802471
Reply with quote  #2

1714802471
Report to moderator
Bitcoin mining is now a specialized and very risky industry, just like gold mining. Amateur miners are unlikely to make much money, and may even lose money. Bitcoin is much more than just mining, though!
Advertised sites are not endorsed by the Bitcoin Forum. They may be unsafe, untrustworthy, or illegal in your jurisdiction.
ymgve2
Full Member
***
Offline Offline

Activity: 161
Merit: 230


View Profile
December 28, 2022, 03:37:47 AM
 #2

I see that you're using gen_private_key. This generates arbitrary secure random private keys, using urandom. urandom might be slow depending on your system - do you really need it? I assume whatever you're doing (brute force search?) will generate the private keys in some other fashion, so you can just set prvkey_dec to an integer representing the private key directly.

I also see that iceland2k14/secp256k1 does not provide the source for its libraries which is a bit concerning.
pooya87
Legendary
*
Offline Offline

Activity: 3444
Merit: 10537



View Profile
December 28, 2022, 03:47:49 AM
 #3

Let's make a contest-like game. Create a simple code like this and try to beat the high score of currently 4.7 seconds for 1million bech32 addresses without using GPU.
It has to have a purpose otherwise it is a complete waste of time even if someone could optimize the code to generate 1 billion addresses in 5 seconds.

.
.BLACKJACK ♠ FUN.
█████████
██████████████
████████████
█████████████████
████████████████▄▄
░█████████████▀░▀▀
██████████████████
░██████████████
████████████████
░██████████████
████████████
███████████████░██
██████████
CRYPTO CASINO &
SPORTS BETTING
▄▄███████▄▄
▄███████████████▄
███████████████████
█████████████████████
███████████████████████
█████████████████████████
█████████████████████████
█████████████████████████
███████████████████████
█████████████████████
███████████████████
▀███████████████▀
█████████
.
citb0in (OP)
Hero Member
*****
Offline Offline

Activity: 658
Merit: 656


Bitcoin g33k


View Profile
December 28, 2022, 08:12:45 AM
 #4

Let's make a contest-like game. Create a simple code like this and try to beat the high score of currently 4.7 seconds for 1million bech32 addresses without using GPU.
It has to have a purpose otherwise it is a complete waste of time even if someone could optimize the code to generate 1 billion addresses in 5 seconds.

I think I understand what you mean. There is no prize money, so I better rewrite my previous sentence:
Let's make a contest-like game. Create a simple code like this and try to beat the high score of currently 4.7 seconds for 1million bech32 addresses without using GPU.

I don't see it as a waste, if someone makes helpful and further posts in the forum because for this not only the current forum community benefits but also those who will read here in the future. I see it as an enrichment for the forum. We could change the rules to say that the use of GPU via CUDA should be allowed. I myself have tried various approaches so far using pycu and numba, but I was always unsuccessful. So if someone can do this simple task also within CUDA and can present the result, please feel free to post here. I think everyone will benefit from it.

I see that you're using gen_private_key. This generates arbitrary secure random private keys, using urandom. urandom might be slow depending on your system - do you really need it?
Honestly said, I don't care about if urandom is used or random, I just want to quickly generate random numbers for serving as a privkey. Can you suggest a faster approach which can replace this task?

Quote
I also see that iceland2k14/secp256k1 does not provide the source for its libraries which is a bit concerning.
what concerns in detail you have, can you explain, please?

.
.HUGE.
▄██████████▄▄
▄█████████████████▄
▄█████████████████████▄
▄███████████████████████▄
▄█████████████████████████▄
███████▌██▌▐██▐██▐████▄███
████▐██▐████▌██▌██▌██▌██
█████▀███▀███▀▐██▐██▐█████

▀█████████████████████████▀

▀███████████████████████▀

▀█████████████████████▀

▀█████████████████▀

▀██████████▀▀
█▀▀▀▀











█▄▄▄▄
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
.
CASINSPORTSBOOK
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀▀█











▄▄▄▄█
citb0in (OP)
Hero Member
*****
Offline Offline

Activity: 658
Merit: 656


Bitcoin g33k


View Profile
December 28, 2022, 11:11:10 AM
 #5

From what I know iceland library has no malicious code in it.
One of my teachers used to say: "Thinking is not knowing" Smiley

Since it is possible to put payload to functions.
...
Or use firewall to see all network activity.
why would the author iceland2k14 then hide the source code by not disclosing it? Especially if he still uses source code from AlbertoBSD and Jean-Luc-Ponds? Apart from the fact that this would be illegal as far as I know, since the tools mentioned use appropriate GNU licenses, why would iceland2k14 hide the code if there was nothing to hide? I think this is an interesting point that ymgve2 has made here. I hadn't given this library any serious thought before, but he's right in a way. To the extent that we as users of this closed-source library don't know if malicious functions are being run in the background or data is being exfiltrated, I see that as a danger as well. I will therefore consider not using this library until I am convinced otherwise. Thanks to both of you for this important advice.

Python can never be a good choice for fast code. It is good to try out something fast. Real-deal programs use C/C++ and CUDA.

I understand that while Python code executed on the GPU using these libraries can be very fast, it may not be as fast as native C++ code running on the GPU. This is because the Python interpreter introduces some overhead, and the libraries themselves may have some overhead as well. However, for many applications, the speedup provided by running on the GPU can more than make up for any overhead introduced by Python, and can still result in significantly faster calculations than would be possible using only the CPU. That is why I think it is reasonable to get such calculations running on the GPU, it should be possible with Python.

Python can be used for fast calculations with CUDA by using libraries that provide Python bindings for CUDA. These libraries allow you to write code in Python that can be executed on the GPU, which can provide significant speedups for certain types of calculations. Examples of such libraries that provide Python bindings for CUDA are -as already mentioned before- PyCUDA or Numba. PyCUDA allows writing code in Python that is executed on the GPU using CUDA. It provides a Pythonic interface to the CUDA programming model, making it easy to use for Python developers. Numba, which is a just-in-time (JIT) compiler for Python that can automatically optimize Python code for execution on the GPU. Numba can be used to write GPU-accelerated code in Python using familiar Python syntax, and it can provide significant performance improvements for certain types of calculations. Unfortunately I wasn't able to successful use those two libraries until now, hopefully anyone else can give some insight and assistance here. Sample code is provided on my first post.


.
.HUGE.
▄██████████▄▄
▄█████████████████▄
▄█████████████████████▄
▄███████████████████████▄
▄█████████████████████████▄
███████▌██▌▐██▐██▐████▄███
████▐██▐████▌██▌██▌██▌██
█████▀███▀███▀▐██▐██▐█████

▀█████████████████████████▀

▀███████████████████████▀

▀█████████████████████▀

▀█████████████████▀

▀██████████▀▀
█▀▀▀▀











█▄▄▄▄
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
.
CASINSPORTSBOOK
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀▀█











▄▄▄▄█
pooya87
Legendary
*
Offline Offline

Activity: 3444
Merit: 10537



View Profile
December 28, 2022, 12:32:39 PM
 #6

I think I understand what you mean. There is no prize money, so I better rewrite my previous sentence:
Let's make a contest-like game. Create a simple code like this and try to beat the high score of currently 4.7 seconds for 1million bech32 addresses without using GPU.
Prize is incentive not purpose. A purpose could be something like a tool that would generate vanity addresses so you'd need the fastest possible algorithm and implementation that is capable of checking very large number of addresses per second. Or the purpose could be a recovery tool where you have 8-9 words out of a 12 word seed phrase so you need to check millions of addresses that is generated from it at different derivation paths to find the right combination.

The importance of "purpose" is that it will also clarify HOW to implement it. Right now if I understood the code correctly, you are just aimlessly writing random addresses to disk so there is not much to work with. But if the example I used is the purpose (ie vanity address), there is no need for IO and its bottleneck hence the algorithm changes, there is also no need for Base58 or Bech32 encoding, there is also no need for ECMult each permutation. These very simple changes lead to significant increase in speed.

.
.BLACKJACK ♠ FUN.
█████████
██████████████
████████████
█████████████████
████████████████▄▄
░█████████████▀░▀▀
██████████████████
░██████████████
████████████████
░██████████████
████████████
███████████████░██
██████████
CRYPTO CASINO &
SPORTS BETTING
▄▄███████▄▄
▄███████████████▄
███████████████████
█████████████████████
███████████████████████
█████████████████████████
█████████████████████████
█████████████████████████
███████████████████████
█████████████████████
███████████████████
▀███████████████▀
█████████
.
citb0in (OP)
Hero Member
*****
Offline Offline

Activity: 658
Merit: 656


Bitcoin g33k


View Profile
December 28, 2022, 01:01:59 PM
 #7

I think you misunderstood. The whole should not be a project that I commission here and want to have programmed free of charge by someone. On the contrary, it is about learning and understanding so that you can use it later in various projects. It's not about me, but in general about a kind of knowledge database, from which the whole community benefits. I read here in various posts the most diverse technical questions, often even one and the same the topic. Or it is tried to reinvent the wheel. There are a few who are very good and experiences in developing good code and the matter, but knowledge is shared sparsely, so at least my impression. I am honestly said a newbie in this matter who tries to get in and understand above all. I don't have a real intention, so it's not really about finding vanity addresses or cracking puzzles. There are already solutions for that and I can't develop on those if solid basic knowledge is missing. I want to learn and maybe some day I can find ways to optimize or help others to fulfill this task. The road is the goal.

The example I showed is the basic building block of all conceivable tools that are used in this topic. If Ofek Lev had used an existing library and made do with it, there would have been no "bit" library. But he has thought about how to optimize and improve, or shortcut ways to make the whole thing more efficient. That's what it's all about. I see no disadvantage in sharing such knowledge here, I see clear advantages. If you would work together to optimize and extend such basic calculations like creating an address, a key or derivations of it, then everybody would benefit from it because it is shared publicly. This base can be used on every bitcoin tool out there. So far, unfortunately, I have not found any explanations or examples here that illustrate how such calculations would be implemented using CuPy, Numba or JIT, ergo also the origin of this thread. I would like to optimize Python code that make use of GPU and make the calculcations as fast as possible.

If you or anyone else can contribute factually, I would greatly appreciate it on behalf of the forum community and all future readers here. But describing the whole thing as pointless from the ground up helps neither me, nor you, nor anyone else.

.
.HUGE.
▄██████████▄▄
▄█████████████████▄
▄█████████████████████▄
▄███████████████████████▄
▄█████████████████████████▄
███████▌██▌▐██▐██▐████▄███
████▐██▐████▌██▌██▌██▌██
█████▀███▀███▀▐██▐██▐█████

▀█████████████████████████▀

▀███████████████████████▀

▀█████████████████████▀

▀█████████████████▀

▀██████████▀▀
█▀▀▀▀











█▄▄▄▄
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
.
CASINSPORTSBOOK
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀▀█











▄▄▄▄█
ABCbits
Legendary
*
Offline Offline

Activity: 2870
Merit: 7463


Crypto Swap Exchange


View Profile
December 29, 2022, 12:15:45 PM
 #8

Let's make a contest-like game. Create a simple code like this and try to beat the high score of currently 4.7 seconds for 1million bech32 addresses without using GPU.

Since fastecdsa already utilize C for heavy operation, i doubt we can see major improvement without either
1. Modify some part of fastecdsa to use assembly.
2. Rewrite everything using C/C++/Rust and assembly.

█▀▀▀











█▄▄▄
▀▀▀▀▀▀▀▀▀▀▀
e
▄▄▄▄▄▄▄▄▄▄▄
█████████████
████████████▄███
██▐███████▄█████▀
█████████▄████▀
███▐████▄███▀
████▐██████▀
█████▀█████
███████████▄
████████████▄
██▄█████▀█████▄
▄█████████▀█████▀
███████████▀██▀
████▀█████████
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
c.h.
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀█











▄▄▄█
▄██████▄▄▄
█████████████▄▄
███████████████
███████████████
███████████████
███████████████
███░░█████████
███▌▐█████████
█████████████
███████████▀
██████████▀
████████▀
▀██▀▀
n0nce
Hero Member
*****
Offline Offline

Activity: 882
Merit: 5818


not your keys, not your coins!


View Profile WWW
December 29, 2022, 05:28:52 PM
 #9

Here is an example which generated bech32 addresses:
~snip~
It took 82 seconds to generate those 1 million addresses. This is a rate about 12,195 addresses/sec which is way too slow.

Quote
real   1m22,192s
user   1m21,461s
sys   0m0,640s
I was curious to try out a Rust implementation and took the first thing I could find on the web when looking for 'Rust Bitcoin address generator'.
So far, very disappointing. I added a loop of 1000 iterations to this, and some disk I/O instead of the print statements: https://github.com/mrgian/bitcoin-address-generator

It takes around 5s for 1000 addresses, 538.78s for 100k addresses. Sure, single-threaded, but your initial Python implementation was single-threaded too and just took 82s for 1 million addresses.
As ETFbitcoin mentioned, those Python libraries you use are probably heavily optimized already.

█▀▀▀











█▄▄▄
▀▀▀▀▀▀▀▀▀▀▀
e
▄▄▄▄▄▄▄▄▄▄▄
█████████████
████████████▄███
██▐███████▄█████▀
█████████▄████▀
███▐████▄███▀
████▐██████▀
█████▀█████
███████████▄
████████████▄
██▄█████▀█████▄
▄█████████▀█████▀
███████████▀██▀
████▀█████████
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
c.h.
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀█











▄▄▄█
▄██████▄▄▄
█████████████▄▄
███████████████
███████████████
███████████████
███████████████
███░░█████████
███▌▐█████████
█████████████
███████████▀
██████████▀
████████▀
▀██▀▀
citb0in (OP)
Hero Member
*****
Offline Offline

Activity: 658
Merit: 656


Bitcoin g33k


View Profile
December 29, 2022, 06:05:41 PM
 #10

next step is to shift the load to GPU with pycuda, numba, jit or similar. To use the wrapper PyCUDA we need to modify the code to offload the address generation and private key conversion tasks to the GPU. This can be done by defining GPU kernels that perform these tasks and then using PyCUDA's DeviceAllocation and Kernel functions to run these kernels on the GPU. Unfortunately I was unsucessful with that task.

.
.HUGE.
▄██████████▄▄
▄█████████████████▄
▄█████████████████████▄
▄███████████████████████▄
▄█████████████████████████▄
███████▌██▌▐██▐██▐████▄███
████▐██▐████▌██▌██▌██▌██
█████▀███▀███▀▐██▐██▐█████

▀█████████████████████████▀

▀███████████████████████▀

▀█████████████████████▀

▀█████████████████▀

▀██████████▀▀
█▀▀▀▀











█▄▄▄▄
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
.
CASINSPORTSBOOK
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀▀█











▄▄▄▄█
arulbero
Legendary
*
Offline Offline

Activity: 1915
Merit: 2074


View Profile
December 30, 2022, 11:06:04 AM
Merited by ABCbits (5), hugeblack (4), witcher_sense (2), citb0in (1)
 #11


Quote
real   0m4,768s
user   0m54,444s
sys   0m1,894s

Perfect! Now I'm under 5 seconds for 1 million addresses. That's a rate of roughly 208,000 addresses/sec
How can we further improve the performance without using GPU? Is there anything else you can suggest, that will speed up the process?
Let's make a contest-like game. Create a simple code like this and try to beat the high score of currently 4.7 seconds for 1million bech32 addresses without using GPU.

The next step would be ==> how can we shuffle this code to the GPU for ultra-fast performance ?

Long time ago I wrote a python script that computes 16.4 million of consecutive (non random) public keys (not addresses) in 12.3 s.


No numpy, pure python, only 1 thread.

ecc.py
Code:

#see http://www.secg.org/sec2-v2.pdf at page 9


#Gx=55066263022277343669578718895168534326250603453777594175500187360389116729240
#Gy=32670510020758816978083085130507043184471273380659243275938904335757337482424
#p=115792089237316195423570985008687907853269984665640564039457584007908834671663
#n=115792089237316195423570985008687907852837564279074904382605163141518161494337

Gx=0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy=0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
p=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F # Fp
n=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 # E(Fp)

#endomorphism
lambd=0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72 # (lambda^3 = 1 mod n)    
lambd2=0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283ce #(lambda^2)

beta=0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee # (beta^3 = 1 mod p)
beta2=0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40 # (beta^2)
############################################################################################
###Field operations

#a must be a number between 1 and p-1;    input: a  output: 1/a
#see http://www.springer.com/?SGWID=4-102-45-110359-0 page 40 alg. 2.20
def inv(a,p):
u, v = a%p, p
x1, x2 = 1, 0
while u != 1:
#q = v//u
#r = v-q*u
q, r = divmod(v,u)
x = x2-q*x1
v = u
u = r
x2 = x1
x1 = x
return x1%p


#inverse of a batch of x
#input: batch of x : [x1,x2,x3,x4,x5,x6,x7,x8,...,x2048]
#x is known (x of kG)
#output: batch of inverse: 1/(x1-x), 1/(x2-x), 1/(x3-x), ....
#3M for each inverse
def inv_batch(x,batchx,p):

a = (batchx[1]-x) % p
partial= [0]*2049
partial[1]=a

for i in range(2,2049):
a = (a*(batchx[i]-x)) % p #2047M
partial[i]=a

inverse=inv(partial[2048],p) # 1I
batch_inverse=[0]*2049

for i in range(2048,1,-1):
batch_inverse[i-1]=(partial[i-1]*inverse) % p #2047M
inverse=(inverse*(batchx[i]-x)) %p #2047M

batch_inverse[0]=inverse

return batch_inverse

############################################################################################
##Group operations

#  https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Point_addition
#'double' addition
#add 2 points P and Q -->  P+Q
#add 2 points P and Q -->  P-Q
#
#(X1,Y1) + (X2,Y2)  -->  (X3,Y3)  (the inverse of (x2-x1) must be known)
#(X1,Y1) + (X2,-Y2) -->  (X4,Y4)  (the inverse of (x2-x1) must be known)
#
#input: (X1,Y1), (X2,Y2), the inverse of (X2 - X1): 5 scalars
#output: (X3,Y3), (X4,Y4) :  4 scalars
#4M + 2S

def double_add_P_Q_inv(x1, y1, x2, y2, invx2x1):

dy = (y2-y1) #% p
a = dy*invx2x1 % p #1M
a2 = a**2     #1S
x3 = (a2 - x1 -x2) % p
y3 = (a*(x1-x3) -y1) % p #1M


dy = p-(y2+y1) #% p # only the sign of y2 changes, "y of -Q = -y of +Q"
a = dy*invx2x1 % p #1M  x2 and then the inverse invx2x1 are the same
a2 = a**2   #1S
x4 = (a2 - x1 -x2) % p
y4 = (a*(x1-x4) -y1) % p #1M

return x3, y3, x4, y4


#https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
#jacobian coordinates
def add_j_j(jax, jay, jaz, jbx, jby, jbz):

u1 = (jax*jbz**2) % p
u2 = (jbx*jaz**2) % p
s1 = (jay*jbz**3) % p
s2 = (jby*jaz**3) % p
h = (u2-u1) % p
r = (s2-s1) % p
jcx = (r**2 -h**3-2*u1*h**2) % p
jcy = (r*(u1*h**2-jcx)-s1*h**3) % p
jcz = (h*jaz*jbz) % p
return jcx, jcy, jcz

def double_j_j(jx, jy, jz):
s = (4*jx*jy**2) % p
m = (3*jx**2) % p
jx2 = (m**2 - 2*s) % p
jy2 = (m*(s-jx2) - 8*jy**4) % p
jz2 = (2*jy*jz) % p
return jx2, jy2, jz2


def mul(k,jx,jy,jz):

jkx, jky, jkz = 0, 0, 1
if (k%2 == 1):
jkx, jky, jkz = jx, jy, jz #only if d is odd
q=k//2
while q>0:
jx, jy, jz = double_j_j(jx,jy,jz)
a=q%2
if (a > jkx):
jkx, jky, jkz = jx, jy, jz  #only if d is even
elif (a):
jkx, jky, jkz = add_j_j(jx, jy, jz, jkx, jky, jkz)  
q=q//2
                                 
return jkx, jky, jkz

############################################################################################
#Coordinates

#from jacobian to affine
def jac_to_aff(jax, jay, jaz, invjaz):

ax, ay = (jax*invjaz**2) % p, (jay*invjaz**3) % p

return ax, ay

gen_batches.py
Code:
#!/usr/bin/env python

#this script computes 3x1334 batchs of 4097 points (1 single point + 2048 couples of points -> (kG+mG, kG-mg))
#16,4 millions of points
#3 : 1 batch + 2 endomorphism


from ecc import *

########################################################################
#in this section the script pre-computes 1G, 2G, 3G, ..., 2048G
mG = [(0,0)]*2049
mGx = [0]*2049
mGy = [0]*2049

mGx[1]=Gx
mGy[1]=Gy
mG[1]=(Gx,Gy) #list of multiples of G,
 #you have to precompute and store these multiples somewhere

mGx[2]=0xC6047F9441ED7D6D3045406E95C07CD85C778E4B8CEF3CA7ABAC09B95C709EE5
mGy[2]=0x1AE168FEA63DC339A3C58419466CEAEEF7F632653266D0E1236431A950CFE52A
mG[2]=(mGx[2],mGy[2])

for i in range(3,2049):

jx,jy,jz=add_j_j(Gx, Gy, 1, mGx[i-1], mGy[i-1], 1) #this is not a efficient way, but it is not important
jzinv = inv(jz,p)
(x,y) = jac_to_aff(jx, jy, jz, jzinv)
mG[i] = (x,y)
mGx[i] = x
mGy[i] = y

###########################################################################
lowest_key=2**55+789079076 #put here the lowest key you want to generate
number_of_batches=1334 #put here how many consecutive batches you want to generate
number_of_keys=4097*3*number_of_batches #this is the number of consecutive keys you are going to generate
#this number is always a multiple of 3*4097=12291, because 12291 is the minimum size
#remember: you generate always 3 batches at once, 1 in (1,2^160) and 2 out of this range
#their name are:  batch (the main), batch2, batch3 (that are derived from the main with endomorphism)


id_batch=lowest_key+2048 #id_batch is now the private key of the middle point of the first batch that you want compute
distance_between_successive_batches=4097 #this is the distance from the middle point of the first batch and the middle point of the successive batch in (1,2^160)
#4097 means that I'm generating only consecutive batches in (1,2^160), this is the default


start=id_batch #the first key to generate of the the first batch is the lowest key + 2048 --> the middle point of the first batch
stop=id_batch + number_of_batches*distance_between_successive_batches #the key of the middle point of the last batch


#k is always the id of the current main batch and the key of the middle point of the current main batch
for k in range(start,stop,distance_between_successive_batches):

jkx,jky,jkz = mul(k,Gx,Gy,1) #here we use the slow function mul to generate the middle point
invjkz = inv(jkz,p)
(kx,ky) = jac_to_aff(jkx, jky, jkz, invjkz)

kminverse = [0]*2048
kminverse = inv_batch(kx,mGx,p) #you need to compute 2048 inverse, 1 for each couple
#to perform this task you need only the x coordinates of the multiples of G and the x coordinate of kG: kx
kminverse = [invjkz]+kminverse
#the element number 0 of the list is the inverse invjkz that you have computed to get kG=(kx,ky)
#the element number 1 of the list is the inverse necessary to perform kG + 1G (and kG-1G) --->  1/(x_of_1G - kx)
#the element number 2 of the list is the inverse necessary to perform kG + 2G (and kG-2G) --->  1/(x_of_2G - kx)
#...
#the element number m of the list is the inverse necessary to perform kG + mG (and kG-mG) --->  1/(x_of_mG - kx)
#then the name: "kminverse", the inverse to get the generic kG+mG
#...
#the element number 2048 of the list is the inverse necessary to perform kG+2048G and kG-2048G ---> 1/(x_of_2048G - kx)

kxl = [kx] * 2049 #this is a list of kx, all elements are the same, only to use the function map of python
kyl = [ky] * 2049   #this is a list of ky, all elements are the same, only to use the function map of python

batch=[(0,0,0,0)]*2048
#the element number 0 of the list will be the middle point kG=(kx,ky), you can see it as the couple ((k+0)G, (k-0)G)  
#the element number 1 will be the couple (k+1)G, (k-1)G
#the element number 2 will be the couple (k+2)G, (k-2)G
#...
#the element number 2048 will be the couple (k+2048)G, (k-2048)G
#each element of this list is a couple of points -> 4 scalars: x_(k+m)G,y_(k+m)G,x_(k-m)G,y_(k-m)G,
#but the first element is only a fake couple
batch = list(map(double_add_P_Q_inv,kxl[1:],kyl[1:],mGx[1:],mGy[1:],kminverse[1:]))
#the function double_add_P_Q_inv computes kG +/-mG, it uses the list of the inverse and return a list of couple of points
#each element of this list is a couple of points, 4 scalars, x_(k+m)G,y_(k+m)G,x_(k-m)G,y_(k-m)G
#this list has 2049 elements

batch = [(kx,ky,kx,ky)]+batch #the element number 0 of the list is now the middle point kG=(kx,ky), you can see it as the fake couple (k+0)G, (k-0)G

batch2=[0] * 2049 #this is the batch2 with lambda*kG, ( lambda*(k+1)G, lambda*(k-1)G ),  ( lambda*(k+2)G, lambda*(k-2)G ), ....,
# (lambda*(k+2048)G, lambda*(k-2048)G)
#this list actually has only the x-cooordinates of the points, because the y-coordinates are the same of main batch
#each element of this list is a couple of x -> 2 scalars: x_lambda*(k+m)G, x_lambda*(k-m)G
#this list has 2049 elements


batch3=[0] * 2049 #this is the batch3 with lambda^2*kG, ( lambda^2*(k+1)G, lambda^2*(k-1)G ),  ( lambda^2*(k+2)G, lambda^2*(k-2)G ), ....,
# (lambda^2*(k+2048)G, lambda^2*(k-2048)G)
#this list actually has only the x-cooordinates of the points, because the y-coordinates are the same of main batch
#each element of this list is a couple of x -> 2 scalars: x_lambda^2*(k+m)G, x_lambda^2*(k-m)G
#this list has 2049 elements


for i in range(0,2049): #endomorphism  
batch2[i] = [(batch[i][0]*beta  % p), (batch[i][2]*beta % p)] #only x coordinates, the first and the third scalar of each element of the main batch
#private key: lambda*k mod n,  coordinate x: beta*x mod p
batch3[i] = [(batch[i][0]*beta2 % p), (batch[i][2]*beta2 % p)] #only x coordinates, the first and the third scalar of each element of the main batch
#private key: lambda^2*k mod n,  coordinate x: beta^2*x mod p


#k in this case is the id of the last batch (or if you prefer, k is the private key of the middle point of the last batch)
m=465 #a random number between 0 and 2048, you can pick up a couple of points in the last main batch (or in batch2 / batch3)
(kmx1,kmy1,kmx2,kmy2)=batch[m]
(kmx1,kmx2)=batch3[m] #in this case the points chosen are in batch3
#the y are from main batch, because batch3 (and batch2) have only x coordinates

print ('kG+mG')
print (hex(lambd2*(k+m)%n)) #private key
print (hex(kmx1), hex(kmy1)) #public key (first and second coordinate)
print ('*******')


print ('kG-mG')
print (hex(lambd2*(k-m)%n)) #private key
print (hex(kmx2), hex(kmy2)) #public key (first and second coordinate)
print ('*******')

print (' ')
a=number_of_keys//1000000
print ('You have just generated ' + str(a) + ' Millions of keys!!!')

Code:
time python3 gen_batches.py 
 
You have just generated 16.4 Millions of keys!!!

real 0m12,303s
user 0m12,302s
sys 0m0,000s

Generating consecutive public keys is way faster than generate random public keys.
citb0in (OP)
Hero Member
*****
Offline Offline

Activity: 658
Merit: 656


Bitcoin g33k


View Profile
December 30, 2022, 01:01:18 PM
Last edit: December 30, 2022, 01:43:30 PM by citb0in
 #12

I made quick comparison by editing lowest_key=1000000 and number_of_batches=82 ...
what was the reason therefore? lowest_key is just the number to start the consecutive run IMHO. And I doubt that  you generated 1,007,862 MILLION (!) in 1.6 seconds Smiley
You have just generated 1007862 Millions of keys!!!

real    0m1.626s
With number_of_batches = 82 you should have been generated 1,007,862 keys (which is about 1 million) which the result for of 1.6 is realistic. You could replace the very last line of arulsbero's code in gen_batches.py to get a more clear output:
Code:
#print ('You have just generated ' + str(a) + ' Millions of keys!!!')
print(f'You have just generated {f"{number_of_keys:,.0f}"} keys ({str(a)} MKeys)', end='\n')

We should take into consideration that arulbero's way does not generate the corresponding addresses and not saving them into a file, we need to rewrite the code and see how it behaves.

@arulbero: thanks for sharing, sounds interesting. I need to dig into it, unfortunately I have to go right now but I certainly will check your code later when back at home. I need to think about the consecutive vs. random part and make some comparisons each other. Currently when I run your code it says it generated 1 million keys in average of 1.22 seconds. I just need to test if this speed is realistisc. Can you modify your code so it will generate an address and output all the generated addresses to a file called address.out ?

.
.HUGE.
▄██████████▄▄
▄█████████████████▄
▄█████████████████████▄
▄███████████████████████▄
▄█████████████████████████▄
███████▌██▌▐██▐██▐████▄███
████▐██▐████▌██▌██▌██▌██
█████▀███▀███▀▐██▐██▐█████

▀█████████████████████████▀

▀███████████████████████▀

▀█████████████████████▀

▀█████████████████▀

▀██████████▀▀
█▀▀▀▀











█▄▄▄▄
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
.
CASINSPORTSBOOK
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀▀█











▄▄▄▄█
ecdsa123
Full Member
***
Offline Offline

Activity: 211
Merit: 105

Dr WHO on disney+


View Profile
December 30, 2022, 02:25:34 PM
 #13

not bad:)
Intel I5

Code:
ubuntu@ubuntu2004:/mnt/hgfs/plik$ time python3 run.py
kG+mG
0xcee991a04bbda6040570bbec158ddd4ab69e343ebb60883d55bbd11b159f9baa
0xd978e68c2f3af26a26cd0b22f1442d23fc0860ac09cfbeb3133c34f9bfba57b 0x938ff24f6b18b2c19f07162249ca71799a03bb89d6d68e94e5cde991989b2137
*******
kG-mG
0xbf0522731aa7361bf9e27d1e685e6e01cd4195bf5a81249f7324974b3d3e9b81
0xd3059b20136bddf0beaecdd29894ca28be8166cfe64a4d43e73309eee934357a 0x9f767515c8faf59ab7078a974a47d4620cce75bb738f6fb71ebb11df0bfc2404
*******
 
You have just generated 1007862 Millions of keys!!!

real 0m2.491s
user 0m2.477s
sys 0m0.009s


Donate: bc1q0sezldfgm7rf2r78p5scasrrcfkpzxnrfcvdc6

Subscribe : http://www.youtube.com/@Ecdsa_Solutions
arulbero
Legendary
*
Offline Offline

Activity: 1915
Merit: 2074


View Profile
December 30, 2022, 03:08:58 PM
 #14

@arulbero: thanks for sharing, sounds interesting. I need to dig into it, unfortunately I have to go right now but I certainly will check your code later when back at home. I need to think about the consecutive vs. random part and make some comparisons each other. Currently when I run your code it says it generated 1 million keys in average of 1.22 seconds. I just need to test if this speed is realistisc. Can you modify your code so it will generate an address and output all the generated addresses to a file called address.out ?

I don't have a fast  'pub_to_addr' function

from 12.3 s to 3m and 9s to generate 16.4 M of addresses,  16.4 M / 190 s = about 86k addresses/s.

12 seconds to generate 16.4 M public keys, almost 3m to compute 16.4 M addresses.

Code:
time python3 gen_batches.py > address.out

real 3m8,827s
user 3m8,252s
sys 0m0,520s

wc  address.out

  8200098  16400196 630754794

less address.out

('1K9oVg45UaApB1SmkxKFBZPCKsj2XiKCYw', '1K9oVg45UaApB1SmkxKFBZPCKsj2XiKCYw')
('13hXNkmedXJ5UXt4RY5rLGAZGBgeSHUNT7', '17G6zU4yVBM8WJ7TvJvkVkZr8qtJheAYVy')
('1LZtUG1S8V7yfwthDfJBy1Yg7LWxpZKmQX', '1PDBxaiy3bp8woFbrErNAPoMF8W442B1Nb')
('1CAapBviMeMp91UjqgTaUfr1tGc5Lsvhgx', '1Lmrc69RFRbwGUc3UTRGxumAApEDsJKUrf')
('1JNGqSWZdJFptRrLaCtmUJ6Hq1necKuTCd', '18aQxp32qDDHEFWgVjexS1BG9MdFbQAc6N')
('1CMNQMqqZdyABzU5bms6sE1J4hz2z7w86J', '1Awa5kf9npJ9sJKK65yA1vXFXaqC75tWvt')
('1GXDr1MF5ee5HfZHK98QQrDb8Mk785Hwtj', '14R3fvJcA8SSFgiCAPSQCvrquEG1NM7JcQ')
('1G578XchMTjHTuWduB37XNzNxEyvKxNNGC', '1E2aoTr22SDH18NJdamF3zqjztjtA5i5Cz')
('13BdD8vK9xaN1aw2WXn73rtLfjFvLAs3ES', '1Hgi86UjskxQpCmiKWPBK4Qjr97awHgZ7q')
('1Bnh87jjfNFy9QmRmnsW9vEDWbMDbBbjrF', '1P5wAX3U4v4oNde8yGUcg4YHwQdGRw33wo')
('1DXzgTcLD86LJDxrZerLEBXgQTLpCCRHRC', '1Ce5FYPKPSd9nf5Fv3KtKnzbpdCzJ7bPjg')
...

new ecc.py
Code:
import hashlib
from hashlib import sha256
from binascii import  a2b_hex, b2a_hex
from ripemd import ripemd160  #https://pypi.org/project/ripemd-hash/  -->  pip install ripemd-hash

#see http://www.secg.org/sec2-v2.pdf at page 9


#Gx=55066263022277343669578718895168534326250603453777594175500187360389116729240
#Gy=32670510020758816978083085130507043184471273380659243275938904335757337482424
#p=115792089237316195423570985008687907853269984665640564039457584007908834671663
#n=115792089237316195423570985008687907852837564279074904382605163141518161494337

Gx=0x79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798
Gy=0x483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8
p=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F # Fp
n=0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141 # E(Fp)

#endomorphism
lambd=0x5363ad4cc05c30e0a5261c028812645a122e22ea20816678df02967c1b23bd72 # (lambda^3 = 1 mod n)    
lambd2=0xac9c52b33fa3cf1f5ad9e3fd77ed9ba4a880b9fc8ec739c2e0cfc810b51283ce #(lambda^2)

beta=0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee # (beta^3 = 1 mod p)
beta2=0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40 # (beta^2)
############################################################################################
###Field operations

#a must be a number between 1 and p-1;    input: a  output: 1/a
#see http://www.springer.com/?SGWID=4-102-45-110359-0 page 40 alg. 2.20
def inv(a,p):
u, v = a%p, p
x1, x2 = 1, 0
while u != 1:
#q = v//u
#r = v-q*u
q, r = divmod(v,u)
x = x2-q*x1
v = u
u = r
x2 = x1
x1 = x
return x1%p


#inverse of a batch of x
#input: batch of x : [x1,x2,x3,x4,x5,x6,x7,x8,...,x2048]
#x is known (x of kG)
#output: batch of inverse: 1/(x1-x), 1/(x2-x), 1/(x3-x), ....
#3M for each inverse
def inv_batch(x,batchx,p):

a = (batchx[1]-x) % p
partial= [0]*2049
partial[1]=a

for i in range(2,2049):
a = (a*(batchx[i]-x)) % p #2047M
partial[i]=a

inverse=inv(partial[2048],p) # 1I
batch_inverse=[0]*2049

for i in range(2048,1,-1):
batch_inverse[i-1]=(partial[i-1]*inverse) % p #2047M
inverse=(inverse*(batchx[i]-x)) %p #2047M

batch_inverse[0]=inverse

return batch_inverse

############################################################################################
##Group operations

#  https://en.wikipedia.org/wiki/Elliptic_curve_point_multiplication#Point_addition
#'double' addition
#add 2 points P and Q -->  P+Q
#add 2 points P and Q -->  P-Q
#
#(X1,Y1) + (X2,Y2)  -->  (X3,Y3)  (the inverse of (x2-x1) must be known)
#(X1,Y1) + (X2,-Y2) -->  (X4,Y4)  (the inverse of (x2-x1) must be known)
#
#input: (X1,Y1), (X2,Y2), the inverse of (X2 - X1): 5 scalars
#output: (X3,Y3), (X4,Y4) :  4 scalars
#4M + 2S

def double_add_P_Q_inv(x1, y1, x2, y2, invx2x1):

dy = (y2-y1) #% p
a = dy*invx2x1 % p #1M
a2 = a**2     #1S
x3 = (a2 - x1 -x2) % p
y3 = (a*(x1-x3) -y1) % p #1M


dy = p-(y2+y1) #% p # only the sign of y2 changes, "y of -Q = -y of +Q"
a = dy*invx2x1 % p #1M  x2 and then the inverse invx2x1 are the same
a2 = a**2   #1S
x4 = (a2 - x1 -x2) % p
y4 = (a*(x1-x4) -y1) % p #1M

return x3, y3, x4, y4


#https://en.wikibooks.org/wiki/Cryptography/Prime_Curve/Jacobian_Coordinates
#jacobian coordinates
def add_j_j(jax, jay, jaz, jbx, jby, jbz):

u1 = (jax*jbz**2) % p
u2 = (jbx*jaz**2) % p
s1 = (jay*jbz**3) % p
s2 = (jby*jaz**3) % p
h = (u2-u1) % p
r = (s2-s1) % p
jcx = (r**2 -h**3-2*u1*h**2) % p
jcy = (r*(u1*h**2-jcx)-s1*h**3) % p
jcz = (h*jaz*jbz) % p
return jcx, jcy, jcz

def double_j_j(jx, jy, jz):
s = (4*jx*jy**2) % p
m = (3*jx**2) % p
jx2 = (m**2 - 2*s) % p
jy2 = (m*(s-jx2) - 8*jy**4) % p
jz2 = (2*jy*jz) % p
return jx2, jy2, jz2


def mul(k,jx,jy,jz):

jkx, jky, jkz = 0, 0, 1
if (k%2 == 1):
jkx, jky, jkz = jx, jy, jz #only if d is odd
q=k//2
while q>0:
jx, jy, jz = double_j_j(jx,jy,jz)
a=q%2
if (a > jkx):
jkx, jky, jkz = jx, jy, jz  #only if d is even
elif (a):
jkx, jky, jkz = add_j_j(jx, jy, jz, jkx, jky, jkz)  
q=q//2
                                 
return jkx, jky, jkz

############################################################################################
#Coordinates

#from jacobian to affine
def jac_to_aff(jax, jay, jaz, invjaz):

ax, ay = (jax*invjaz**2) % p, (jay*invjaz**3) % p

return ax, ay

############################################################################################
# 58 character alphabet used
__b58chars = '123456789ABCDEFGHJKLMNPQRSTUVWXYZabcdefghijkmnopqrstuvwxyz'
__b58base = len(__b58chars)

def b58encode(v): #encode v, which is a string of bytes, to base58.    
long_value = 0

if bytes == str:  # python2
for (i, c) in enumerate(v[::-1]):
long_value += ord(c) << (8*i) # 2x speedup vs. exponentiation
else: # python3
for (i, c) in enumerate(v[::-1]):
long_value += ord(chr(c)) << (8*i) # 2x speedup vs. exponentiation

result = ''
#long_value = v
while long_value >= __b58base:
     div, mod = divmod(long_value, __b58base)
     result = __b58chars[mod] + result
     long_value = div
result = __b58chars[long_value] + result
#return result

 # Bitcoin does a little leading-zero-compression:
 # leading 0-bytes in the input become leading-1s
nPad = 0
#if bytes == str:  # python2
# for c in v:
# if c == '\0': nPad += 1
# else: break

#else:  # python3
for c in v:
if chr(c) == '\0': nPad += 1
else: break

return (__b58chars[0]*nPad) + result

def b58decode(v, length):
    """ decode v into a string of len bytes."""
    print(type(v))
    long_value = 0
    for (i, c) in enumerate(v[::-1]):
        long_value += __b58chars.find(c) * (__b58base**i)

    div, mod = divmod(long_value, 256)
    result = struct.pack("B", mod)   #converte numero intero tra 0 e 255 in 1 byte https://docs.python.org/2/library/struct.html
    long_value = div

    while long_value >= 256:
         div, mod = divmod(long_value, 256)
         result = struct.pack("B", mod) + result   #stringa di byte
         long_value = div
    result = struct.pack("B", long_value) + result
 
    nPad = 0
    for c in v:
         if c == __b58chars[0]: nPad += 1
         else: break
 
    result = struct.pack("B", 0)*nPad + result

    
    if length is not None and len(result) != length:
        return None
    print(type(result))  
    return result
    
def pub_to_addr(couple):
        
#d = int(d1,16)
#Px, Py = mul2G(d)  # P = d*G
Px=couple[0]
Py=couple[1]
Px2=couple[2]
Py2=couple[3]

#if (compressed == 1):
if (Py % 2) == 0:
P_string  = '02' + hex(Px)[2:].rstrip('L').rjust(64,'0')         #formato compresso - caso y pari
else:
P_string  = '03' + hex(Px)[2:].rstrip('L').rjust(64,'0')        #formato compresso - caso y pari
#else: #uncompressed
# P_string = '04' + hex(Px)[2:].rstrip('L').rjust(64,'0') + hex(Py)[2:].rstrip('L').rjust(64,'0')


h = sha256(a2b_hex(P_string))                    #sha256

h1=ripemd160.new()                               #ripmed160
h1.update(h.digest())


a = b'\x00' + h1.digest()  #aggiunge byte 00 all'inizio

h2 = sha256(sha256(a).digest()).digest()  #doppio sha256 per controllo

addr = a + h2[:4]                

address1 = b58encode(addr)  #ultimo passaggio: codifica in base 58


if (Py2 % 2) == 0:
P_string  = '02' + hex(Px2)[2:].rstrip('L').rjust(64,'0')         #formato compresso - caso y pari
else:
P_string  = '03' + hex(Px2)[2:].rstrip('L').rjust(64,'0')        #formato compresso - caso y pari
#else: #uncompressed
# P_string = '04' + hex(Px)[2:].rstrip('L').rjust(64,'0') + hex(Py)[2:].rstrip('L').rjust(64,'0')


h = sha256(a2b_hex(P_string))                    #sha256

h1=ripemd160.new()                               #ripmed160
h1.update(h.digest())

a = b'\x00' + h1.digest()  #aggiunge byte 00 all'inizio

h2 = sha256(sha256(a).digest()).digest()  #doppio sha256 per controllo

addr = a + h2[:4]                

address2 = b58encode(addr)  #ultimo passaggio: codifica in base 58

return address1, address2
#print (address)

new gen_batches.py
Code:
#!/usr/bin/env python

#this script computes 3x1334 batchs of 4097 points (1 single point + 2048 couples of points -> (kG+mG, kG-mg))
#16,4 millions of points
#3 : 1 batch + 2 endomorphism


from ecc import *

########################################################################
#in this section the script pre-computes 1G, 2G, 3G, ..., 2048G
mG = [(0,0)]*2049
mGx = [0]*2049
mGy = [0]*2049

mGx[1]=Gx
mGy[1]=Gy
mG[1]=(Gx,Gy) #list of multiples of G,
 #you have to precompute and store these multiples somewhere

mGx[2]=0xC6047F9441ED7D6D3045406E95C07CD85C778E4B8CEF3CA7ABAC09B95C709EE5
mGy[2]=0x1AE168FEA63DC339A3C58419466CEAEEF7F632653266D0E1236431A950CFE52A
mG[2]=(mGx[2],mGy[2])

for i in range(3,2049):

jx,jy,jz=add_j_j(Gx, Gy, 1, mGx[i-1], mGy[i-1], 1) #this is not a efficient way, but it is not important
jzinv = inv(jz,p)
(x,y) = jac_to_aff(jx, jy, jz, jzinv)
mG[i] = (x,y)
mGx[i] = x
mGy[i] = y

###########################################################################
lowest_key=2**55+789079076 #put here the lowest key you want to generate
number_of_batches=1334 #put here how many consecutive batches you want to generate
number_of_keys=4097*3*number_of_batches #this is the number of consecutive keys you are going to generate
#this number is always a multiple of 3*4097=12291, because 12291 is the minimum size
#remember: you generate always 3 batches at once, 1 in (1,2^160) and 2 out of this range
#their name are:  batch (the main), batch2, batch3 (that are derived from the main with endomorphism)


id_batch=lowest_key+2048 #id_batch is now the private key of the middle point of the first batch that you want compute
distance_between_successive_batches=4097 #this is the distance from the middle point of the first batch and the middle point of the successive batch in (1,2^160)
#4097 means that I'm generating only consecutive batches in (1,2^160), this is the default


start=id_batch #the first key to generate of the the first batch is the lowest key + 2048 --> the middle point of the first batch
stop=id_batch + number_of_batches*distance_between_successive_batches #the key of the middle point of the last batch




#k is always the id of the current main batch and the key of the middle point of the current main batch
for k in range(start,stop,distance_between_successive_batches):

jkx,jky,jkz = mul(k,Gx,Gy,1) #here we use the slow function mul to generate the middle point
invjkz = inv(jkz,p)
(kx,ky) = jac_to_aff(jkx, jky, jkz, invjkz)

kminverse = [0]*2048
kminverse = inv_batch(kx,mGx,p) #you need to compute 2048 inverse, 1 for each couple
#to perform this task you need only the x coordinates of the multiples of G and the x coordinate of kG: kx
kminverse = [invjkz]+kminverse
#the element number 0 of the list is the inverse invjkz that you have computed to get kG=(kx,ky)
#the element number 1 of the list is the inverse necessary to perform kG + 1G (and kG-1G) --->  1/(x_of_1G - kx)
#the element number 2 of the list is the inverse necessary to perform kG + 2G (and kG-2G) --->  1/(x_of_2G - kx)
#...
#the element number m of the list is the inverse necessary to perform kG + mG (and kG-mG) --->  1/(x_of_mG - kx)
#then the name: "kminverse", the inverse to get the generic kG+mG
#...
#the element number 2048 of the list is the inverse necessary to perform kG+2048G and kG-2048G ---> 1/(x_of_2048G - kx)

kxl = [kx] * 2049 #this is a list of kx, all elements are the same, only to use the function map of python
kyl = [ky] * 2049   #this is a list of ky, all elements are the same, only to use the function map of python

batch=[(0,0,0,0)]*2048
#the element number 0 of the list will be the middle point kG=(kx,ky), you can see it as the couple ((k+0)G, (k-0)G)  
#the element number 1 will be the couple (k+1)G, (k-1)G
#the element number 2 will be the couple (k+2)G, (k-2)G
#...
#the element number 2048 will be the couple (k+2048)G, (k-2048)G
#each element of this list is a couple of points -> 4 scalars: x_(k+m)G,y_(k+m)G,x_(k-m)G,y_(k-m)G,
#but the first element is only a fake couple
batch = list(map(double_add_P_Q_inv,kxl[1:],kyl[1:],mGx[1:],mGy[1:],kminverse[1:]))
#the function double_add_P_Q_inv computes kG +/-mG, it uses the list of the inverse and return a list of couple of points
#each element of this list is a couple of points, 4 scalars, x_(k+m)G,y_(k+m)G,x_(k-m)G,y_(k-m)G
#this list has 2049 elements

batch = [(kx,ky,kx,ky)]+batch #the element number 0 of the list is now the middle point kG=(kx,ky), you can see it as the fake couple (k+0)G, (k-0)G

#batch_tot = batch_tot + batch
addresses = list(map(pub_to_addr, batch))
print (*addresses, sep="\n")


batch2=[(0,0,0,0)] * 2049 #this is the batch2 with lambda*kG, ( lambda*(k+1)G, lambda*(k-1)G ),  ( lambda*(k+2)G, lambda*(k-2)G ), ....,
# (lambda*(k+2048)G, lambda*(k-2048)G)
#this list actually has only the x-cooordinates of the points, because the y-coordinates are the same of main batch
#each element of this list is a couple of x -> 2 scalars: x_lambda*(k+m)G, x_lambda*(k-m)G
#this list has 2049 elements




batch3=[(0,0,0,0)] * 2049 #this is the batch3 with lambda^2*kG, ( lambda^2*(k+1)G, lambda^2*(k-1)G ),  ( lambda^2*(k+2)G, lambda^2*(k-2)G ), ....,
# (lambda^2*(k+2048)G, lambda^2*(k-2048)G)
#this list actually has only the x-cooordinates of the points, because the y-coordinates are the same of main batch
#each element of this list is a couple of x -> 2 scalars: x_lambda^2*(k+m)G, x_lambda^2*(k-m)G
#this list has 2049 elements


for i in range(0,2049): #endomorphism  
batch2[i] = ((batch[i][0]*beta  % p), batch[i][1], (batch[i][2]*beta % p), batch[i][3]) #only x coordinates, the first and the third scalar of each element of the main batch
#private key: lambda*k mod n,  coordinate x: beta*x mod p



batch3[i] = ((batch[i][0]*beta2 % p), batch[i][1], (batch[i][2]*beta2 % p), batch[i][3]) #only x coordinates, the first and the third scalar of each element of the main batch
#private key: lambda^2*k mod n,  coordinate x: beta^2*x mod p

      
addresses2 = list(map(pub_to_addr, batch2))
print (*addresses2, sep="\n")
addresses3 = list(map(pub_to_addr, batch3))
print (*addresses3, sep="\n")
        



#k in this case is the id of the last batch (or if you prefer, k is the private key of the middle point of the last batch)
"""
m=465 #a random number between 0 and 2048, you can pick up a couple of points in the last main batch (or in batch2 / batch3)
(kmx1,kmy1,kmx2,kmy2)=batch[m]
(kmx1,kmx2)=batch3[m] #in this case the points chosen are in batch3
#the y are from main batch, because batch3 (and batch2) have only x coordinates

print ('kG+mG')
print (hex(lambd2*(k+m)%n)) #private key
print (hex(kmx1), hex(kmy1)) #public key (first and second coordinate)
print ('*******')


print ('kG-mG')
print (hex(lambd2*(k-m)%n)) #private key
print (hex(kmx2), hex(kmy2)) #public key (first and second coordinate)
print ('*******')
"""

"""
print (' ')
a=number_of_keys//1000000
print ('You have just generated ' + str(a) + ' Millions of keys!!!')
"""
citb0in (OP)
Hero Member
*****
Offline Offline

Activity: 658
Merit: 656


Bitcoin g33k


View Profile
December 30, 2022, 03:40:50 PM
 #15

I don't have a fast  'pub_to_addr' function

from 12.3 s to 3m and 9s to generate 16.4 M of addresses,  16.4 M / 190 s = about 86k addresses/s.

12 seconds to generate 16.4 M public keys, almost 3m to compute 16.4 M addresses.

I had already thought that halfway. Now with your updated version which also generates addresses it's much slower, the result is clearly different than just calculating the pubkey as you showed in your initial version.
I get about 70,000 addresses/sec with your updated version:

Code:
$ time python3 new_gen_batches.py > addresses.out 

Quote
real   0m13,378s
user   0m13,347s
sys   0m0,012s

I realized that you output tuples of addresses using list(map). I suggest to adjust your program so it outputs a single address on each line so we compares apples by apples. I am not sure if the list output affects performance in some way, that's why I am pointing to it.

The example I originally showed using iceland2k14/libsecp256k1 was about half the speed. With it I can generate 1 million addresses using all cores (in my case 16 cores) and write to the file in 4.8 seconds, this is a rate of about 208,300 keys/sec. I have modified my initial program so that you can now also configure the cores under which the program is executed. So one can select specifically "1" as value, so that we also compare apples with apples.

Code:
#!/usr/bin/env python3
# 2022/Dec/30, citb0in
import concurrent.futures
import os
import numpy as np
import fastecdsa.keys as fkeys
import fastecdsa.curve as fcurve
import secp256k1 as ice

# how many cores to use
num_cores = 1
#num_cores = os.cpu_count()

# Set the number of addresses to generate
num_addresses = 1000000

# Define a worker function that generates a batch of addresses and returns them
def worker(start, end):
  # Generate a NumPy array of random private keys using fastecdsa
  private_keys = np.array([fkeys.gen_private_key(fcurve.P256) for _ in range(start, end)])

  # Use secp256k1 to convert the private keys to addresses
  thread_addresses = np.array([ice.privatekey_to_address(2, True, dec) for dec in private_keys])

  return thread_addresses

# Use a ProcessPoolExecutor to generate the addresses in parallel
with concurrent.futures.ProcessPoolExecutor() as executor:
  # Divide the addresses evenly among the available CPU cores
  addresses_per_core = num_addresses // num_cores

  # Submit a task for each batch of addresses to the executor
  tasks = []
  for i in range(num_cores):
    start = i * addresses_per_core
    end = (i+1) * addresses_per_core
    tasks.append(executor.submit(worker, start, end))

  # Wait for the tasks to complete and retrieve the results
  addresses = []
  for task in concurrent.futures.as_completed(tasks):
    addresses.extend(task.result())

# Write the addresses to a file
np.savetxt('addresses_1M_with_singleCore.txt', addresses, fmt='%s')

Running this under one single core, now I get 26.5 sec for 1 million generated addresses. This is a rate of 37,735 keys/second. I am curious to see your program using all available cores.

.
.HUGE.
▄██████████▄▄
▄█████████████████▄
▄█████████████████████▄
▄███████████████████████▄
▄█████████████████████████▄
███████▌██▌▐██▐██▐████▄███
████▐██▐████▌██▌██▌██▌██
█████▀███▀███▀▐██▐██▐█████

▀█████████████████████████▀

▀███████████████████████▀

▀█████████████████████▀

▀█████████████████▀

▀██████████▀▀
█▀▀▀▀











█▄▄▄▄
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
.
CASINSPORTSBOOK
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀▀█











▄▄▄▄█
arulbero
Legendary
*
Offline Offline

Activity: 1915
Merit: 2074


View Profile
December 30, 2022, 04:40:39 PM
 #16


I realized that you output tuples of addresses using list(map). I suggest to adjust your program so it outputs a single address on each line so we compares apples by apples. I am not sure if the list output affects performance in some way, that's why I am pointing to it.

The example I originally showed using iceland2k14/libsecp256k1 was about half the speed. With it I can generate 1 million addresses using all cores (in my case 16 cores) and write to the file in 4.8 seconds, this is a rate of about 208,300 keys/sec. I have modified my initial program so that you can now also configure the cores under which the program is executed. So one can select specifically "1" as value, so that we also compare apples with apples.

To generate 1 address for line you need to replace

print (*addresses,sep="\n")
print (*addresses2,sep="\n")
print (*addresses3,sep="\n")

with

for i in addresses:
      print (*i, sep="\n")
for i in addresses2:
      print (*i, sep="\n")
for i in addresses3:
      print (*i, sep="\n")

The results are the same (slightly faster):
Code:
time python3 gen_batches.py > addresses.out

real 3m5,736s
user 3m5,268s
sys 0m0,404s

wc addresses.out
 
  16400196  16400196 573355137


less addresses.out

1K9oVg45UaApB1SmkxKFBZPCKsj2XiKCYw
1K9oVg45UaApB1SmkxKFBZPCKsj2XiKCYw
13hXNkmedXJ5UXt4RY5rLGAZGBgeSHUNT7
17G6zU4yVBM8WJ7TvJvkVkZr8qtJheAYVy
1LZtUG1S8V7yfwthDfJBy1Yg7LWxpZKmQX
1PDBxaiy3bp8woFbrErNAPoMF8W442B1Nb
1CAapBviMeMp91UjqgTaUfr1tGc5Lsvhgx
1Lmrc69RFRbwGUc3UTRGxumAApEDsJKUrf
1JNGqSWZdJFptRrLaCtmUJ6Hq1necKuTCd
18aQxp32qDDHEFWgVjexS1BG9MdFbQAc6N
....
   
citb0in (OP)
Hero Member
*****
Offline Offline

Activity: 658
Merit: 656


Bitcoin g33k


View Profile
December 30, 2022, 04:50:52 PM
Last edit: December 30, 2022, 05:49:03 PM by citb0in
 #17

I would like to try another approach and using iceland's secp256k1 library for generating the address from the pubkey. Can you tell me in which variable I can find the public key in your program?

For example. When I print the second element of the list "batch" I get
Code:
print(batch[1])
Quote
(26088438602568126703237513271074049975900194846956880971674554085576597277452, 66899334846368891744016007453456293662065123677302105461153252024609684696055, 54338240394213138931889225770364196918256374885639854771044914499200701239376, 91288621757068410199936994202114003372515557459679014336095768812037691308008)

The first element is the xkey (pubkey) of that key:

Quote
private key (dec) : 36028797808045093
private key (hex) : 8000002f086c25
public pair x        : 26088438602568126703237513271074049975900194846956880971674554085576597277452

the second element
66899334846368891744016007453456293662065123677302105461153252024609684696055
represents the public pair y

what is third and fourth element representing?

54338240394213138931889225770364196918256374885639854771044914499200701239376
91288621757068410199936994202114003372515557459679014336095768812037691308008

As I recognize, they seem not to be the public keys of the consequent keys 36028797808045094, 36028797808045095, 36028797808045096



.
.HUGE.
▄██████████▄▄
▄█████████████████▄
▄█████████████████████▄
▄███████████████████████▄
▄█████████████████████████▄
███████▌██▌▐██▐██▐████▄███
████▐██▐████▌██▌██▌██▌██
█████▀███▀███▀▐██▐██▐█████

▀█████████████████████████▀

▀███████████████████████▀

▀█████████████████████▀

▀█████████████████▀

▀██████████▀▀
█▀▀▀▀











█▄▄▄▄
▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀
.
CASINSPORTSBOOK
▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄▄
▀▀▀▀█











▄▄▄▄█
arulbero
Legendary
*
Offline Offline

Activity: 1915
Merit: 2074


View Profile
December 30, 2022, 06:05:25 PM
Last edit: December 30, 2022, 10:08:28 PM by arulbero
Merited by ABCbits (2)
 #18

what is third and fourth element representing?

54338240394213138931889225770364196918256374885639854771044914499200701239376
91288621757068410199936994202114003372515557459679014336095768812037691308008

As I recognize, they seem not to be the public keys of the consequent keys 36028797808045094, 36028797808045095, 36028797808045096

The keys are generated in this way:


P
(P + 1*G , P - 1*G)   -> 4 coordinates, x and y * 2 points
(P + 2*G , P - 2*G)
(P + 3*G , P - 3*G)
(P + 4*G , P - 4*G)
(P + 5*G , P - 5*G)
(P + 6*G , P - 6*G)
.....
.....
(P + 2048*G, P - 2048*G)

each batch has all the consecutive keys from P - 2048*G to P+2048*G   (4097 public keys), but they are not in order

Code:
batch=[(0,0,0,0)]*2048
#the element number 0 of the list will be the middle point kG=(kx,ky), you can see it as the couple ((k+0)G, (k-0)G)  
#the element number 1 will be the couple (k+1)G, (k-1)G
#the element number 2 will be the couple (k+2)G, (k-2)G
#...
#the element number 2048 will be the couple (k+2048)G, (k-2048)G
#each element of this list is a couple of points -> 4 scalars: x_(k+m)G,y_(k+m)G,x_(k-m)G,y_(k-m)G,
#but the first element is only a fake couple
batch = [(kx,ky,kx,ky)]+batch #the element number 0 of the list is now the middle point kG=(kx,ky), you can see it as the fake couple (k+0)G, (k-0)G
NotATether
Legendary
*
Offline Offline

Activity: 1596
Merit: 6727


bitcoincleanup.com / bitmixlist.org


View Profile WWW
December 30, 2022, 06:21:01 PM
 #19

@arulbero

Impressive how you're getting those speeds on Python, considering that multithreading is complicated to do efficiently in that language, and GPU/FPGA support is lackluster to nonexistent.

.
.BLACKJACK ♠ FUN.
█████████
██████████████
████████████
█████████████████
████████████████▄▄
░█████████████▀░▀▀
██████████████████
░██████████████
████████████████
░██████████████
████████████
███████████████░██
██████████
CRYPTO CASINO &
SPORTS BETTING
▄▄███████▄▄
▄███████████████▄
███████████████████
█████████████████████
███████████████████████
█████████████████████████
█████████████████████████
█████████████████████████
███████████████████████
█████████████████████
███████████████████
▀███████████████▀
█████████
.
arulbero
Legendary
*
Offline Offline

Activity: 1915
Merit: 2074


View Profile
December 30, 2022, 06:24:12 PM
 #20

@arulbero

Impressive how you're getting those speeds on Python, considering that multithreading is complicated to do efficiently in that language, and GPU/FPGA support is lackluster to nonexistent.

It is not programming related, computing P+G is much more easier than compute P=3512878756844563653653674365654352352*G
Pages: [1] 2 3 »  All
  Print  
 
Jump to:  

Powered by MySQL Powered by PHP Powered by SMF 1.1.19 | SMF © 2006-2009, Simple Machines Valid XHTML 1.0! Valid CSS!