Well, it fell into an empty slot.
Imagine that we have a game cube with 64 sides and 160 throws, more throws means repetitions will occur. Next, for each of 64 we divide by 128, that is, we take a cube with 8192 sides so that there are no repetitions.
10000000000000000000000000000000 00000000000000000000000000000000 1 pz 2
00000000000000000000000000000000 00000000000010000000000000000000 45 pz 3
00000000000000000000000000000000 00000000000000000000001000000000 55 pz 4
10000000000000000000000000000000 00000000000000000000000000000000 1 pz 5
00000000000000000000000000000000 00100000000000000000000000000000 35 pz 6
00000000000000000000000000000000 00000000000001000000000000000000 46 pz 7
00000000000000000000000000100000 00000000000000000000000000000000 27 pz 8
00000000000000000000000000000000 00000000000000000000001000000000 55 pz 9
00000000000000000000000000000000 00000000000000000000000001000000 58 pz 10
00100000000000000000000000000000 00000000000000000000000000000000 3 pz 11
00000000000000000000010000000000 00000000000000000000000000000000 22 pz 12
00000000000000000000000000000000 00100000000000000000000000000000 35 pz 13
00000000000000000000000000000000 10000000000000000000000000000000 33 pz 14
00000000000000000000000000000000 01000000000000000000000000000000 34 pz 15
00000000000000000000000000000000 00000000000000000010000000000000 51 pz 16
00000000000000000000000000000000 00000000000000010000000000000000 48 pz 17
00000000000000000000000000000000 00000000001000000000000000000000 43 pz 18
00000000000000000000000000000000 00000000000010000000000000000000 45 pz 19
00000000000000000000000000000000 00000100000000000000000000000000 38 pz 20
00000000000000000000000000000000 00000000000000000010000000000000 51 pz 21
00000000000000000000000000000000 00000000000000000000010000000000 54 pz 22
00000000000000000000000000000000 00000000010000000000000000000000 42 pz 23
00000000000000000000000000000000 00000000000000000000010000000000 54 pz 24
00000000000000000000000000000000 00000000000000000000000000000010 63 pz 25
00000000000000000000000000000000 00000000000000000100000000000000 50 pz 26
00000000000000000000000000000000 00000000000000000001000000000000 52 pz 27
00000000000000000000000000000000 00000000000000000000100000000000 53 pz 28
00000000000000000000000000000000 00000000000100000000000000000000 44 pz 29
00000000000000000000000000000000 00000000000000000000000000001000 61 pz 30
00000000000000000000000000000000 00000000000000000000000000000100 62 pz 31
00000000000000000000000000000000 00000000010000000000000000000000 42 pz 32
00000000000000000000000000000000 00000000000000000001000000000000 52 pz 33
00000000000000000000000000000000 00000000000000000010000000000000 51 pz 34
00000000000000000000000001000000 00000000000000000000000000000000 26 pz 35
00000000000000000000000000000100 00000000000000000000000000000000 30 pz 36
00000000000000000000000000000000 00000000001000000000000000000000 43 pz 37
00000000000000010000000000000000 00000000000000000000000000000000 16 pz 38
00000000000000000000000001000000 00000000000000000000000000000000 26 pz 39
00000000000000000000000000000000 00000000000000000000000001000000 58 pz 40
00000000000000000000000000000000 00010000000000000000000000000000 36 pz 41
00000000000000000000000000000000 00010000000000000000000000000000 36 pz 42
00000000000000000000000000000000 00000000000000000001000000000000 52 pz 43
00000000000000000000000000000000 00000000000000000000001000000000 55 pz 44
00000000000000000000001000000000 00000000000000000000000000000000 23 pz 45
00000000000000000000000000000000 00000000001000000000000000000000 43 pz 46
00000000000000000000000000000000 00000000000000000000100000000000 53 pz 47
00000000000000000000000000000000 00000100000000000000000000000000 38 pz 48
00000000000000000000000000000000 00000000001000000000000000000000 43 pz 49
00000000000000000100000000000000 00000000000000000000000000000000 18 pz 50
00000000000000000000000000000000 00000000000000000000000001000000 58 pz 51
00000000000000000000000000000000 00000000000000000000000000100000 59 pz 52
00000000000000000000000000000000 00000000000010000000000000000000 45 pz 53
00000000000000000001000000000000 00000000000000000000000000000000 20 pz 54
00000000000000000000000000000000 00000000000000000001000000000000 52 pz 55
00000000000000000000000000000100 00000000000000000000000000000000 30 pz 56
00000000000000000000000000000000 00000000000000000000000000001000 61 pz 57
00000000000000000000000000000000 00000010000000000000000000000000 39 pz 58
00000000000000000000000000000000 00000000000000000000000001000000 58 pz 59
00000000000000000000000000000000 00000000000000000000000000000100 62 pz 60
00000000000000000000000000000010 00000000000000000000000000000000 31 pz 61
00000000000000000000000000000000 00000000000000000000100000000000 53 pz 62
00000000000000000000000000000000 00000000000000000000000000000100 62 pz 63
00000000000000000000000000000000 00000000000000000000000000001000 61 pz 64
00000000000000000000000000000000 00000000000000000010000000000000 51 pz 65
00000000000000000000000000000001 00000000000000000000000000000000 32 pz 66 ...............x.x.x.xx..x...xxx xxxx.xx..xxxx..xxxxxxxx.xxx.xxx. pz 67
00000000000000000000000000000000 00000100000000000000000000000000 38 pz 70
00000000000000000000000000000000 00000000000000000000000010000000 57 pz 75
00000000000000000000000001000000 00000000000000000000000000000000 26 pz 80
00000000000000000000000000000000 00000000000000000000000000001000 61 pz 85
00000000000000000000000000000000 00000000000000001000000000000000 49 pz 90
00000000000000000000000000000000 00000000000000000000100000000000 53 pz 95
00000000000000000000000000000000 00000000000000000100000000000000 50 pz 100
00000000000000000000000000000000 00000000000000010000000000000000 48 pz 105
00000000000000000000000000000000 00010000000000000000000000000000 36 pz 110
00000000000000000000000000000000 00000000000100000000000000000000 44 pz 115
pz 120
pz 125
not yet dropped free sides from 1 to 15, 17 19 21 24 25 27 28 29 37 40 41 46 47 56 60 64
for example, 43, 51, 52, 53, 58, 61 have already fallen out 4 times.
sides not yet rolled in a 64-sided die (128 each for 8192)
***
pz 64
8192, 64/2 32 8192/2 4096, 8192/64 128,
7899
(√(2^63)/8192×7899)^2+2^63; 7899/128 hex(F7051F27B09112D4
[17798765725016391680 61,7109375 dec(17799667357578236628]
pz 65
8192, 64/2 32 8192/2 4096, 8192/64 128,
6640
(√(2^64)/8192×6640)^2+2^64; 6640/128; hex(1A838B13505B26867
[30566001039707734016 51,875 dec(30568377312064202855]
pz 66
4146
(√(2^65)/8192×4146)^2+2^65 46343414555177123840
46346217550346335726
(√(2^65)/8192×4147)^2+2^65 46347973680141697024
(√(2^65)/8192×4146)^2+2^65; 4146/128
46343414555177123840 32,390625 46346217550346335726
***
free missing sides and possible space for pz 67
1-15
(√(2^66)/8192×129)^2+2^66; 8192/128 73805273267836026880
(√(2^66)/8192×1921)^2+2^66; 8192/128 77844439183633940480
17
(√(2^66)/8192×2177)^2+2^66; 8192/128 78997923638194208768
(√(2^66)/8192×2305)^2+2^66; 8192/128 79628709061002788864
19
(√(2^66)/8192×2433)^2+2^66; 8192/128 80295523280830332928
(√(2^66)/8192×2561)^2+2^66; 8192/128 80998366297676840960
21
(√(2^66)/8192×2689)^2+2^66; 8192/128 81737238111542312960
(√(2^66)/8192×2817)^2+2^66; 8192/128 82512138722426748928
24
(√(2^66)/8192×3073)^2+2^66; 8192/128 84170026335252512768
(√(2^66)/8192×3201)^2+2^66; 8192/128 85053013337193840640
25
(√(2^66)/8192×3201)^2+2^66; 8192/128 85053013337193840640
(√(2^66)/8192×3329)^2+2^66; 8192/128 85972029136154132480
27
(√(2^66)/8192×3457)^2+2^66; 8192/128 86927073732133388288
(√(2^66)/8192×3585)^2+2^66; 8192/128 87918147125131608064
28
(√(2^66)/8192×3585)^2+2^66; 8192/128 87918147125131608064
(√(2^66)/8192×3713)^2+2^66; 8192/128 88945249315148791808
29
(√(2^66)/8192×3713)^2+2^66; 8192/128 88945249315148791808
(√(2^66)/8192×3841)^2+2^66; 8192/128 90008380302184939520
37
(√(2^66)/8192×4736)^2+2^66; 8192/128 98448687854319042560
(√(2^66)/8192×4864)^2+2^66; 8192/128 99799767742530191360
40
(√(2^66)/8192×5120)^2+2^66; 8192/128 102610013910009380864
(√(2^66)/8192×5248)^2+2^66; 8192/128 104069180189277421568
41
(√(2^66)/8192×5248)^2+2^66; 8192/128 104069180189277421568
(√(2^66)/8192×5376)^2+2^66; 8192/128 105564375265564426240
46
(√(2^66)/8192×5888)^2+2^66; 8192/128 111905443540902084608
(√(2^66)/8192×6016)^2+2^66; 8192/128 113580782602283909120
47
(√(2^66)/8192×6016)^2+2^66; 8192/128 113580782602283909120
(√(2^66)/8192×6144)^2+2^66; 8192/128 115292150460684697600
56
(√(2^66)/8192×7168)^2+2^66; 8192/128 130280130020573708288
(√(2^66)/8192×7296)^2+2^66; 8192/128 132315757052145172480
60
(√(2^66)/8192×7680)^2+2^66; 8192/128 138638810928973348864
(√(2^66)/8192×7808)^2+2^66; 8192/128 140818553148620668928
from the standpoint of probability, this doesn’t seem to mean anything, but you can try to look where else, according to this view