Jean-Luc
|
|
November 24, 2013, 01:07:45 AM Last edit: November 24, 2013, 11:45:24 AM by Jean-Luc |
|
It is not exactly what i wanted. I need something like btc vanitygen - to get account id number with some pattern e.g begining with 55555....
Here is a simple brute-force modification of vanity.java to do what you wanted. Sorry, I have no place to upload a compiled binary, you would have to compile the java file yourself. I only modified the main method. import java.math.BigInteger; import java.security.MessageDigest; import java.util.concurrent.ThreadLocalRandom; import java.util.concurrent.atomic.AtomicLong;
public class vanity {
/* key size */ public static final int KEY_SIZE = 32;
/* 0 */ public static final byte[] ZERO = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
/* the prime 2^255-19 */ public static final byte[] PRIME = { (byte)237, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)255, (byte)127 };
/* group order (a prime near 2^252+2^124) */ public static final byte[] ORDER = { (byte)237, (byte)211, (byte)245, (byte)92, (byte)26, (byte)99, (byte)18, (byte)88, (byte)214, (byte)156, (byte)247, (byte)162, (byte)222, (byte)249, (byte)222, (byte)20, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)16 };
/********* KEY AGREEMENT *********/
/* Private key clamping * k [out] your private key for key agreement * k [in] 32 random bytes */ public static final void clamp(byte[] k) { k[31] &= 0x7F; k[31] |= 0x40; k[ 0] &= 0xF8; }
/* Key-pair generation * P [out] your public key * s [out] your private key for signing * k [out] your private key for key agreement * k [in] 32 random bytes * s may be NULL if you don't care * * WARNING: if s is not NULL, this function has data-dependent timing */ public static final void keygen(byte[] P, byte[] s, byte[] k) { clamp(k); core(P, s, k, null); }
/* Key agreement * Z [out] shared secret (needs hashing before use) * k [in] your private key for key agreement * P [in] peer's public key */ public static final void curve(byte[] Z, byte[] k, byte[] P) { core(Z, null, k, P); }
/********* DIGITAL SIGNATURES *********/
/* deterministic EC-KCDSA * * s is the private key for signing * P is the corresponding public key * Z is the context data (signer public key or certificate, etc) * * signing: * * m = hash(Z, message) * x = hash(m, s) * keygen25519(Y, NULL, x); * r = hash(Y); * h = m XOR r * sign25519(v, h, x, s); * * output (v,r) as the signature * * verification: * * m = hash(Z, message); * h = m XOR r * verify25519(Y, v, h, P) * * confirm r == hash(Y) * * It would seem to me that it would be simpler to have the signer directly do * h = hash(m, Y) and send that to the recipient instead of r, who can verify * the signature by checking h == hash(m, Y). If there are any problems with * such a scheme, please let me know. * * Also, EC-KCDSA (like most DS algorithms) picks x random, which is a waste of * perfectly good entropy, but does allow Y to be calculated in advance of (or * parallel to) hashing the message. */
/* Signature generation primitive, calculates (x-h)s mod q * v [out] signature value * h [in] signature hash (of message, signature pub key, and context data) * x [in] signature private key * s [in] private key for signing * returns true on success, false on failure (use different x or h) */ public static final boolean sign(byte[] v, byte[] h, byte[] x, byte[] s) { /* v = (x - h) s mod q */ byte[] tmp1=new byte[65]; byte[] tmp2=new byte[33]; int w; int i; for (i = 0; i < 32; i++) v[i] = 0; i = mula_small(v, x, 0, h, 32, -1); mula_small(v, v, 0, ORDER, 32, (15-v[31])/16); mula32(tmp1, v, s, 32, 1); divmod(tmp2, tmp1, 64, ORDER, 32); for (w = 0, i = 0; i < 32; i++) w |= v[i] = tmp1[i]; return w != 0; }
/* Signature verification primitive, calculates Y = vP + hG * Y [out] signature public key * v [in] signature value * h [in] signature hash * P [in] public key */ public static final void verify(byte[] Y, byte[] v, byte[] h, byte[] P) { /* Y = v abs(P) + h G */ byte[] d=new byte[32]; long10[] p=new long10[]{new long10(),new long10()}, s=new long10[]{new long10(),new long10()}, yx=new long10[]{new long10(),new long10(),new long10()}, yz=new long10[]{new long10(),new long10(),new long10()}, t1=new long10[]{new long10(),new long10(),new long10()}, t2=new long10[]{new long10(),new long10(),new long10()};
int vi = 0, hi = 0, di = 0, nvh=0, i, j, k;
/* set p[0] to G and p[1] to P */
set(p[0], 9); unpack(p[1], P);
/* set s[0] to P+G and s[1] to P-G */
/* s[0] = (Py^2 + Gy^2 - 2 Py Gy)/(Px - Gx)^2 - Px - Gx - 486662 */ /* s[1] = (Py^2 + Gy^2 + 2 Py Gy)/(Px - Gx)^2 - Px - Gx - 486662 */
x_to_y2(t1[0], t2[0], p[1]); /* t2[0] = Py^2 */ sqrt(t1[0], t2[0]); /* t1[0] = Py or -Py */ j = is_negative(t1[0]); /* ... check which */ t2[0]._0 += 39420360; /* t2[0] = Py^2 + Gy^2 */ mul(t2[1], BASE_2Y, t1[0]);/* t2[1] = 2 Py Gy or -2 Py Gy */ sub(t1[j], t2[0], t2[1]); /* t1[0] = Py^2 + Gy^2 - 2 Py Gy */ add(t1[1-j], t2[0], t2[1]);/* t1[1] = Py^2 + Gy^2 + 2 Py Gy */ cpy(t2[0], p[1]); /* t2[0] = Px */ t2[0]._0 -= 9; /* t2[0] = Px - Gx */ sqr(t2[1], t2[0]); /* t2[1] = (Px - Gx)^2 */ recip(t2[0], t2[1], 0); /* t2[0] = 1/(Px - Gx)^2 */ mul(s[0], t1[0], t2[0]); /* s[0] = t1[0]/(Px - Gx)^2 */ sub(s[0], s[0], p[1]); /* s[0] = t1[0]/(Px - Gx)^2 - Px */ s[0]._0 -= 9 + 486662; /* s[0] = X(P+G) */ mul(s[1], t1[1], t2[0]); /* s[1] = t1[1]/(Px - Gx)^2 */ sub(s[1], s[1], p[1]); /* s[1] = t1[1]/(Px - Gx)^2 - Px */ s[1]._0 -= 9 + 486662; /* s[1] = X(P-G) */ mul_small(s[0], s[0], 1); /* reduce s[0] */ mul_small(s[1], s[1], 1); /* reduce s[1] */
/* prepare the chain */ for (i = 0; i < 32; i++) { vi = (vi >> 8) ^ (v[i] & 0xFF) ^ ((v[i] & 0xFF) << 1); hi = (hi >> 8) ^ (h[i] & 0xFF) ^ ((h[i] & 0xFF) << 1); nvh = ~(vi ^ hi); di = (nvh & (di & 0x80) >> 7) ^ vi; di ^= nvh & (di & 0x01) << 1; di ^= nvh & (di & 0x02) << 1; di ^= nvh & (di & 0x04) << 1; di ^= nvh & (di & 0x08) << 1; di ^= nvh & (di & 0x10) << 1; di ^= nvh & (di & 0x20) << 1; di ^= nvh & (di & 0x40) << 1; d[i] = (byte)di; }
di = ((nvh & (di & 0x80) << 1) ^ vi) >> 8;
/* initialize state */ set(yx[0], 1); cpy(yx[1], p[di]); cpy(yx[2], s[0]); set(yz[0], 0); set(yz[1], 1); set(yz[2], 1);
/* y[0] is (even)P + (even)G * y[1] is (even)P + (odd)G if current d-bit is 0 * y[1] is (odd)P + (even)G if current d-bit is 1 * y[2] is (odd)P + (odd)G */
vi = 0; hi = 0;
/* and go for it! */ for (i = 32; i--!=0; ) { vi = (vi << 8) | (v[i] & 0xFF); hi = (hi << 8) | (h[i] & 0xFF); di = (di << 8) | (d[i] & 0xFF);
for (j = 8; j--!=0; ) { mont_prep(t1[0], t2[0], yx[0], yz[0]); mont_prep(t1[1], t2[1], yx[1], yz[1]); mont_prep(t1[2], t2[2], yx[2], yz[2]);
k = ((vi ^ vi >> 1) >> j & 1) + ((hi ^ hi >> 1) >> j & 1); mont_dbl(yx[2], yz[2], t1[k], t2[k], yx[0], yz[0]);
k = (di >> j & 2) ^ ((di >> j & 1) << 1); mont_add(t1[1], t2[1], t1[k], t2[k], yx[1], yz[1], p[di >> j & 1]);
mont_add(t1[2], t2[2], t1[0], t2[0], yx[2], yz[2], s[((vi ^ hi) >> j & 2) >> 1]); } }
k = (vi & 1) + (hi & 1); recip(t1[0], yz[k], 0); mul(t1[1], yx[k], t1[0]);
pack(t1[1], Y); }
///////////////////////////////////////////////////////////////////////////
/* sahn0: * Using this class instead of long[10] to avoid bounds checks. */ private static final class long10 { public long10() {} public long10( long _0, long _1, long _2, long _3, long _4, long _5, long _6, long _7, long _8, long _9) { this._0=_0; this._1=_1; this._2=_2; this._3=_3; this._4=_4; this._5=_5; this._6=_6; this._7=_7; this._8=_8; this._9=_9; } public long _0,_1,_2,_3,_4,_5,_6,_7,_8,_9; }
/********************* radix 2^8 math *********************/
private static final void cpy32(byte[] d, byte[] s) { int i; for (i = 0; i < 32; i++) d[i] = s[i]; }
/* p[m..n+m-1] = q[m..n+m-1] + z * x */ /* n is the size of x */ /* n+m is the size of p and q */ private static final int mula_small(byte[] p,byte[] q,int m,byte[] x,int n,int z) { int v=0; for (int i=0;i<n;++i) { v+=(q[i+m] & 0xFF)+z*(x[i] & 0xFF); p[i+m]=(byte)v; v>>=8; } return v; }
/* p += x * y * z where z is a small integer * x is size 32, y is size t, p is size 32+t * y is allowed to overlap with p+32 if you don't care about the upper half */ private static final int mula32(byte[] p, byte[] x, byte[] y, int t, int z) { final int n = 31; int w = 0; int i = 0; for (; i < t; i++) { int zy = z * (y[i] & 0xFF); w += mula_small(p, p, i, x, n, zy) + (p[i+n] & 0xFF) + zy * (x[n] & 0xFF); p[i+n] = (byte)w; w >>= 8; } p[i+n] = (byte)(w + (p[i+n] & 0xFF)); return w >> 8; }
/* divide r (size n) by d (size t), returning quotient q and remainder r * quotient is size n-t+1, remainder is size t * requires t > 0 && d[t-1] != 0 * requires that r[-1] and d[-1] are valid memory locations * q may overlap with r+t */ private static final void divmod(byte[] q, byte[] r, int n, byte[] d, int t) { int rn = 0; int dt = ((d[t-1] & 0xFF) << 8); if (t>1) { dt |= (d[t-2] & 0xFF); } while (n-- >= t) { int z = (rn << 16) | ((r[n] & 0xFF) << 8); if (n>0) { z |= (r[n-1] & 0xFF); } z/=dt; rn += mula_small(r,r, n-t+1, d, t, -z); q[n-t+1] = (byte)((z + rn) & 0xFF); /* rn is 0 or -1 (underflow) */ mula_small(r,r, n-t+1, d, t, -rn); rn = (r[n] & 0xFF); r[n] = 0; } r[t-1] = (byte)rn; }
private static final int numsize(byte[] x,int n) { while (n--!=0 && x[n]==0) ; return n+1; }
/* Returns x if a contains the gcd, y if b. * Also, the returned buffer contains the inverse of a mod b, * as 32-byte signed. * x and y must have 64 bytes space for temporary use. * requires that a[-1] and b[-1] are valid memory locations */ private static final byte[] egcd32(byte[] x,byte[] y,byte[] a,byte[] b) { int an, bn = 32, qn, i; for (i = 0; i < 32; i++) x[i] = y[i] = 0; x[0] = 1; an = numsize(a, 32); if (an==0) return y; /* division by zero */ byte[] temp=new byte[32]; while (true) { qn = bn - an + 1; divmod(temp, b, bn, a, an); bn = numsize(b, bn); if (bn==0) return x; mula32(y, x, temp, qn, -1);
qn = an - bn + 1; divmod(temp, a, an, b, bn); an = numsize(a, an); if (an==0) return y; mula32(x, y, temp, qn, -1); } }
/********************* radix 2^25.5 GF(2^255-19) math *********************/
private static final int P25=33554431; /* (1 << 25) - 1 */ private static final int P26=67108863; /* (1 << 26) - 1 */
/* Convert to internal format from little-endian byte format */ private static final void unpack(long10 x,byte[] m) { x._0 = ((m[0] & 0xFF)) | ((m[1] & 0xFF))<<8 | (m[2] & 0xFF)<<16 | ((m[3] & 0xFF)& 3)<<24; x._1 = ((m[3] & 0xFF)&~ 3)>>2 | (m[4] & 0xFF)<<6 | (m[5] & 0xFF)<<14 | ((m[6] & 0xFF)& 7)<<22; x._2 = ((m[6] & 0xFF)&~ 7)>>3 | (m[7] & 0xFF)<<5 | (m[8] & 0xFF)<<13 | ((m[9] & 0xFF)&31)<<21; x._3 = ((m[9] & 0xFF)&~31)>>5 | (m[10] & 0xFF)<<3 | (m[11] & 0xFF)<<11 | ((m[12] & 0xFF)&63)<<19; x._4 = ((m[12] & 0xFF)&~63)>>6 | (m[13] & 0xFF)<<2 | (m[14] & 0xFF)<<10 | (m[15] & 0xFF) <<18; x._5 = (m[16] & 0xFF) | (m[17] & 0xFF)<<8 | (m[18] & 0xFF)<<16 | ((m[19] & 0xFF)& 1)<<24; x._6 = ((m[19] & 0xFF)&~ 1)>>1 | (m[20] & 0xFF)<<7 | (m[21] & 0xFF)<<15 | ((m[22] & 0xFF)& 7)<<23; x._7 = ((m[22] & 0xFF)&~ 7)>>3 | (m[23] & 0xFF)<<5 | (m[24] & 0xFF)<<13 | ((m[25] & 0xFF)&15)<<21; x._8 = ((m[25] & 0xFF)&~15)>>4 | (m[26] & 0xFF)<<4 | (m[27] & 0xFF)<<12 | ((m[28] & 0xFF)&63)<<20; x._9 = ((m[28] & 0xFF)&~63)>>6 | (m[29] & 0xFF)<<2 | (m[30] & 0xFF)<<10 | (m[31] & 0xFF) <<18; }
/* Check if reduced-form input >= 2^255-19 */ private static final boolean is_overflow(long10 x) { return ( ((x._0 > P26-19)) && ((x._1 & x._3 & x._5 & x._7 & x._9) == P25) && ((x._2 & x._4 & x._6 & x._8) == P26) ) || (x._9 > P25); }
/* Convert from internal format to little-endian byte format. The * number must be in a reduced form which is output by the following ops: * unpack, mul, sqr * set -- if input in range 0 .. P25 * If you're unsure if the number is reduced, first multiply it by 1. */ private static final void pack(long10 x,byte[] m) { int ld = 0, ud = 0; long t; ld = (is_overflow(x)?1:0) - ((x._9 < 0)?1:0); ud = ld * -(P25+1); ld *= 19; t = ld + x._0 + (x._1 << 26); m[ 0] = (byte)t; m[ 1] = (byte)(t >> 8); m[ 2] = (byte)(t >> 16); m[ 3] = (byte)(t >> 24); t = (t >> 32) + (x._2 << 19); m[ 4] = (byte)t; m[ 5] = (byte)(t >> 8); m[ 6] = (byte)(t >> 16); m[ 7] = (byte)(t >> 24); t = (t >> 32) + (x._3 << 13); m[ 8] = (byte)t; m[ 9] = (byte)(t >> 8); m[10] = (byte)(t >> 16); m[11] = (byte)(t >> 24); t = (t >> 32) + (x._4 << 6); m[12] = (byte)t; m[13] = (byte)(t >> 8); m[14] = (byte)(t >> 16); m[15] = (byte)(t >> 24); t = (t >> 32) + x._5 + (x._6 << 25); m[16] = (byte)t; m[17] = (byte)(t >> 8); m[18] = (byte)(t >> 16); m[19] = (byte)(t >> 24); t = (t >> 32) + (x._7 << 19); m[20] = (byte)t; m[21] = (byte)(t >> 8); m[22] = (byte)(t >> 16); m[23] = (byte)(t >> 24); t = (t >> 32) + (x._8 << 12); m[24] = (byte)t; m[25] = (byte)(t >> 8); m[26] = (byte)(t >> 16); m[27] = (byte)(t >> 24); t = (t >> 32) + ((x._9 + ud) << 6); m[28] = (byte)t; m[29] = (byte)(t >> 8); m[30] = (byte)(t >> 16); m[31] = (byte)(t >> 24); }
/* Copy a number */ private static final void cpy(long10 out, long10 in) { out._0=in._0; out._1=in._1; out._2=in._2; out._3=in._3; out._4=in._4; out._5=in._5; out._6=in._6; out._7=in._7; out._8=in._8; out._9=in._9; }
/* Set a number to value, which must be in range -185861411 .. 185861411 */ private static final void set(long10 out, int in) { out._0=in; out._1=0; out._2=0; out._3=0; out._4=0; out._5=0; out._6=0; out._7=0; out._8=0; out._9=0; }
/* Add/subtract two numbers. The inputs must be in reduced form, and the * output isn't, so to do another addition or subtraction on the output, * first multiply it by one to reduce it. */ private static final void add(long10 xy, long10 x, long10 y) { xy._0 = x._0 + y._0; xy._1 = x._1 + y._1; xy._2 = x._2 + y._2; xy._3 = x._3 + y._3; xy._4 = x._4 + y._4; xy._5 = x._5 + y._5; xy._6 = x._6 + y._6; xy._7 = x._7 + y._7; xy._8 = x._8 + y._8; xy._9 = x._9 + y._9; } private static final void sub(long10 xy, long10 x, long10 y) { xy._0 = x._0 - y._0; xy._1 = x._1 - y._1; xy._2 = x._2 - y._2; xy._3 = x._3 - y._3; xy._4 = x._4 - y._4; xy._5 = x._5 - y._5; xy._6 = x._6 - y._6; xy._7 = x._7 - y._7; xy._8 = x._8 - y._8; xy._9 = x._9 - y._9; }
/* Multiply a number by a small integer in range -185861411 .. 185861411. * The output is in reduced form, the input x need not be. x and xy may point * to the same buffer. */ private static final long10 mul_small(long10 xy, long10 x, long y) { long t; t = (x._8*y); xy._8 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x._9*y); xy._9 = (t & ((1 << 25) - 1)); t = 19 * (t >> 25) + (x._0*y); xy._0 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x._1*y); xy._1 = (t & ((1 << 25) - 1)); t = (t >> 25) + (x._2*y); xy._2 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x._3*y); xy._3 = (t & ((1 << 25) - 1)); t = (t >> 25) + (x._4*y); xy._4 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x._5*y); xy._5 = (t & ((1 << 25) - 1)); t = (t >> 25) + (x._6*y); xy._6 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x._7*y); xy._7 = (t & ((1 << 25) - 1)); t = (t >> 25) + xy._8; xy._8 = (t & ((1 << 26) - 1)); xy._9 += (t >> 26); return xy; }
/* Multiply two numbers. The output is in reduced form, the inputs need not * be. */ private static final long10 mul(long10 xy, long10 x, long10 y) { /* sahn0: * Using local variables to avoid class access. * This seem to improve performance a bit... */ long x_0=x._0,x_1=x._1,x_2=x._2,x_3=x._3,x_4=x._4, x_5=x._5,x_6=x._6,x_7=x._7,x_8=x._8,x_9=x._9; long y_0=y._0,y_1=y._1,y_2=y._2,y_3=y._3,y_4=y._4, y_5=y._5,y_6=y._6,y_7=y._7,y_8=y._8,y_9=y._9; long t; t = (x_0*y_8) + (x_2*y_6) + (x_4*y_4) + (x_6*y_2) + (x_8*y_0) + 2 * ((x_1*y_7) + (x_3*y_5) + (x_5*y_3) + (x_7*y_1)) + 38 * (x_9*y_9); xy._8 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x_0*y_9) + (x_1*y_8) + (x_2*y_7) + (x_3*y_6) + (x_4*y_5) + (x_5*y_4) + (x_6*y_3) + (x_7*y_2) + (x_8*y_1) + (x_9*y_0); xy._9 = (t & ((1 << 25) - 1)); t = (x_0*y_0) + 19 * ((t >> 25) + (x_2*y_8) + (x_4*y_6) + (x_6*y_4) + (x_8*y_2)) + 38 * ((x_1*y_9) + (x_3*y_7) + (x_5*y_5) + (x_7*y_3) + (x_9*y_1)); xy._0 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x_0*y_1) + (x_1*y_0) + 19 * ((x_2*y_9) + (x_3*y_8) + (x_4*y_7) + (x_5*y_6) + (x_6*y_5) + (x_7*y_4) + (x_8*y_3) + (x_9*y_2)); xy._1 = (t & ((1 << 25) - 1)); t = (t >> 25) + (x_0*y_2) + (x_2*y_0) + 19 * ((x_4*y_8) + (x_6*y_6) + (x_8*y_4)) + 2 * (x_1*y_1) + 38 * ((x_3*y_9) + (x_5*y_7) + (x_7*y_5) + (x_9*y_3)); xy._2 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x_0*y_3) + (x_1*y_2) + (x_2*y_1) + (x_3*y_0) + 19 * ((x_4*y_9) + (x_5*y_8) + (x_6*y_7) + (x_7*y_6) + (x_8*y_5) + (x_9*y_4)); xy._3 = (t & ((1 << 25) - 1)); t = (t >> 25) + (x_0*y_4) + (x_2*y_2) + (x_4*y_0) + 19 * ((x_6*y_8) + (x_8*y_6)) + 2 * ((x_1*y_3) + (x_3*y_1)) + 38 * ((x_5*y_9) + (x_7*y_7) + (x_9*y_5)); xy._4 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x_0*y_5) + (x_1*y_4) + (x_2*y_3) + (x_3*y_2) + (x_4*y_1) + (x_5*y_0) + 19 * ((x_6*y_9) + (x_7*y_8) + (x_8*y_7) + (x_9*y_6)); xy._5 = (t & ((1 << 25) - 1)); t = (t >> 25) + (x_0*y_6) + (x_2*y_4) + (x_4*y_2) + (x_6*y_0) + 19 * (x_8*y_8) + 2 * ((x_1*y_5) + (x_3*y_3) + (x_5*y_1)) + 38 * ((x_7*y_9) + (x_9*y_7)); xy._6 = (t & ((1 << 26) - 1)); t = (t >> 26) + (x_0*y_7) + (x_1*y_6) + (x_2*y_5) + (x_3*y_4) + (x_4*y_3) + (x_5*y_2) + (x_6*y_1) + (x_7*y_0) + 19 * ((x_8*y_9) + (x_9*y_8)); xy._7 = (t & ((1 << 25) - 1)); t = (t >> 25) + xy._8; xy._8 = (t & ((1 << 26) - 1)); xy._9 += (t >> 26); return xy; }
/* Square a number. Optimization of mul25519(x2, x, x) */ private static final long10 sqr(long10 x2, long10 x) { long x_0=x._0,x_1=x._1,x_2=x._2,x_3=x._3,x_4=x._4, x_5=x._5,x_6=x._6,x_7=x._7,x_8=x._8,x_9=x._9; long t; t = (x_4*x_4) + 2 * ((x_0*x_8) + (x_2*x_6)) + 38 * (x_9*x_9) + 4 * ((x_1*x_7) + (x_3*x_5)); x2._8 = (t & ((1 << 26) - 1)); t = (t >> 26) + 2 * ((x_0*x_9) + (x_1*x_8) + (x_2*x_7) + (x_3*x_6) + (x_4*x_5)); x2._9 = (t & ((1 << 25) - 1)); t = 19 * (t >> 25) + (x_0*x_0) + 38 * ((x_2*x_8) + (x_4*x_6) + (x_5*x_5)) + 76 * ((x_1*x_9) + (x_3*x_7)); x2._0 = (t & ((1 << 26) - 1)); t = (t >> 26) + 2 * (x_0*x_1) + 38 * ((x_2*x_9) + (x_3*x_8) + (x_4*x_7) + (x_5*x_6)); x2._1 = (t & ((1 << 25) - 1)); t = (t >> 25) + 19 * (x_6*x_6) + 2 * ((x_0*x_2) + (x_1*x_1)) + 38 * (x_4*x_8) + 76 * ((x_3*x_9) + (x_5*x_7)); x2._2 = (t & ((1 << 26) - 1)); t = (t >> 26) + 2 * ((x_0*x_3) + (x_1*x_2)) + 38 * ((x_4*x_9) + (x_5*x_8) + (x_6*x_7)); x2._3 = (t & ((1 << 25) - 1)); t = (t >> 25) + (x_2*x_2) + 2 * (x_0*x_4) + 38 * ((x_6*x_8) + (x_7*x_7)) + 4 * (x_1*x_3) + 76 * (x_5*x_9); x2._4 = (t & ((1 << 26) - 1)); t = (t >> 26) + 2 * ((x_0*x_5) + (x_1*x_4) + (x_2*x_3)) + 38 * ((x_6*x_9) + (x_7*x_8)); x2._5 = (t & ((1 << 25) - 1)); t = (t >> 25) + 19 * (x_8*x_8) + 2 * ((x_0*x_6) + (x_2*x_4) + (x_3*x_3)) + 4 * (x_1*x_5) + 76 * (x_7*x_9); x2._6 = (t & ((1 << 26) - 1)); t = (t >> 26) + 2 * ((x_0*x_7) + (x_1*x_6) + (x_2*x_5) + (x_3*x_4)) + 38 * (x_8*x_9); x2._7 = (t & ((1 << 25) - 1)); t = (t >> 25) + x2._8; x2._8 = (t & ((1 << 26) - 1)); x2._9 += (t >> 26); return x2; }
/* Calculates a reciprocal. The output is in reduced form, the inputs need not * be. Simply calculates y = x^(p-2) so it's not too fast. */ /* When sqrtassist is true, it instead calculates y = x^((p-5)/8) */ private static final void recip(long10 y, long10 x, int sqrtassist) { long10 t0=new long10(), t1=new long10(), t2=new long10(), t3=new long10(), t4=new long10(); int i; /* the chain for x^(2^255-21) is straight from djb's implementation */ sqr(t1, x); /* 2 == 2 * 1 */ sqr(t2, t1); /* 4 == 2 * 2 */ sqr(t0, t2); /* 8 == 2 * 4 */ mul(t2, t0, x); /* 9 == 8 + 1 */ mul(t0, t2, t1); /* 11 == 9 + 2 */ sqr(t1, t0); /* 22 == 2 * 11 */ mul(t3, t1, t2); /* 31 == 22 + 9 == 2^5 - 2^0 */ sqr(t1, t3); /* 2^6 - 2^1 */ sqr(t2, t1); /* 2^7 - 2^2 */ sqr(t1, t2); /* 2^8 - 2^3 */ sqr(t2, t1); /* 2^9 - 2^4 */ sqr(t1, t2); /* 2^10 - 2^5 */ mul(t2, t1, t3); /* 2^10 - 2^0 */ sqr(t1, t2); /* 2^11 - 2^1 */ sqr(t3, t1); /* 2^12 - 2^2 */ for (i = 1; i < 5; i++) { sqr(t1, t3); sqr(t3, t1); } /* t3 */ /* 2^20 - 2^10 */ mul(t1, t3, t2); /* 2^20 - 2^0 */ sqr(t3, t1); /* 2^21 - 2^1 */ sqr(t4, t3); /* 2^22 - 2^2 */ for (i = 1; i < 10; i++) { sqr(t3, t4); sqr(t4, t3); } /* t4 */ /* 2^40 - 2^20 */ mul(t3, t4, t1); /* 2^40 - 2^0 */ for (i = 0; i < 5; i++) { sqr(t1, t3); sqr(t3, t1); } /* t3 */ /* 2^50 - 2^10 */ mul(t1, t3, t2); /* 2^50 - 2^0 */ sqr(t2, t1); /* 2^51 - 2^1 */ sqr(t3, t2); /* 2^52 - 2^2 */ for (i = 1; i < 25; i++) { sqr(t2, t3); sqr(t3, t2); } /* t3 */ /* 2^100 - 2^50 */ mul(t2, t3, t1); /* 2^100 - 2^0 */ sqr(t3, t2); /* 2^101 - 2^1 */ sqr(t4, t3); /* 2^102 - 2^2 */ for (i = 1; i < 50; i++) { sqr(t3, t4); sqr(t4, t3); } /* t4 */ /* 2^200 - 2^100 */ mul(t3, t4, t2); /* 2^200 - 2^0 */ for (i = 0; i < 25; i++) { sqr(t4, t3); sqr(t3, t4); } /* t3 */ /* 2^250 - 2^50 */ mul(t2, t3, t1); /* 2^250 - 2^0 */ sqr(t1, t2); /* 2^251 - 2^1 */ sqr(t2, t1); /* 2^252 - 2^2 */ if (sqrtassist!=0) { mul(y, x, t2); /* 2^252 - 3 */ } else { sqr(t1, t2); /* 2^253 - 2^3 */ sqr(t2, t1); /* 2^254 - 2^4 */ sqr(t1, t2); /* 2^255 - 2^5 */ mul(y, t1, t0); /* 2^255 - 21 */ } }
/* checks if x is "negative", requires reduced input */ private static final int is_negative(long10 x) { return (int)(((is_overflow(x) || (x._9 < 0))?1:0) ^ (x._0 & 1)); }
/* a square root */ private static final void sqrt(long10 x, long10 u) { long10 v=new long10(), t1=new long10(), t2=new long10(); add(t1, u, u); /* t1 = 2u */ recip(v, t1, 1); /* v = (2u)^((p-5)/8) */ sqr(x, v); /* x = v^2 */ mul(t2, t1, x); /* t2 = 2uv^2 */ t2._0--; /* t2 = 2uv^2-1 */ mul(t1, v, t2); /* t1 = v(2uv^2-1) */ mul(x, u, t1); /* x = uv(2uv^2-1) */ }
/********************* Elliptic curve *********************/
/* y^2 = x^3 + 486662 x^2 + x over GF(2^255-19) */
/* t1 = ax + az * t2 = ax - az */ private static final void mont_prep(long10 t1, long10 t2, long10 ax, long10 az) { add(t1, ax, az); sub(t2, ax, az); }
/* A = P + Q where * X(A) = ax/az * X(P) = (t1+t2)/(t1-t2) * X(Q) = (t3+t4)/(t3-t4) * X(P-Q) = dx * clobbers t1 and t2, preserves t3 and t4 */ private static final void mont_add(long10 t1, long10 t2, long10 t3, long10 t4,long10 ax, long10 az, long10 dx) { mul(ax, t2, t3); mul(az, t1, t4); add(t1, ax, az); sub(t2, ax, az); sqr(ax, t1); sqr(t1, t2); mul(az, t1, dx); }
/* B = 2 * Q where * X(B) = bx/bz * X(Q) = (t3+t4)/(t3-t4) * clobbers t1 and t2, preserves t3 and t4 */ private static final void mont_dbl(long10 t1, long10 t2, long10 t3, long10 t4,long10 bx, long10 bz) { sqr(t1, t3); sqr(t2, t4); mul(bx, t1, t2); sub(t2, t1, t2); mul_small(bz, t2, 121665); add(t1, t1, bz); mul(bz, t1, t2); }
/* Y^2 = X^3 + 486662 X^2 + X * t is a temporary */ private static final void x_to_y2(long10 t, long10 y2, long10 x) { sqr(t, x); mul_small(y2, x, 486662); add(t, t, y2); t._0++; mul(y2, t, x); }
/* P = kG and s = sign(P)/k */ private static final void core(byte[] Px, byte[] s, byte[] k, byte[] Gx) { long10 dx=new long10(), t1=new long10(), t2=new long10(), t3=new long10(), t4=new long10(); long10[] x=new long10[]{new long10(),new long10()}, z=new long10[]{new long10(),new long10()}; int i, j;
/* unpack the base */ if (Gx!=null) unpack(dx, Gx); else set(dx, 9);
/* 0G = point-at-infinity */ set(x[0], 1); set(z[0], 0);
/* 1G = G */ cpy(x[1], dx); set(z[1], 1);
for (i = 32; i--!=0; ) { if (i==0) { i=0; } for (j = 8; j--!=0; ) { /* swap arguments depending on bit */ int bit1 = (k[i] & 0xFF) >> j & 1; int bit0 = ~(k[i] & 0xFF) >> j & 1; long10 ax = x[bit0]; long10 az = z[bit0]; long10 bx = x[bit1]; long10 bz = z[bit1];
/* a' = a + b */ /* b' = 2 b */ mont_prep(t1, t2, ax, az); mont_prep(t3, t4, bx, bz); mont_add(t1, t2, t3, t4, ax, az, dx); mont_dbl(t1, t2, t3, t4, bx, bz); } }
recip(t1, z[0], 0); mul(dx, x[0], t1); pack(dx, Px);
/* calculate s such that s abs(P) = G .. assumes G is std base point */ if (s!=null) { x_to_y2(t2, t1, dx); /* t1 = Py^2 */ recip(t3, z[1], 0); /* where Q=P+G ... */ mul(t2, x[1], t3); /* t2 = Qx */ add(t2, t2, dx); /* t2 = Qx + Px */ t2._0 += 9 + 486662; /* t2 = Qx + Px + Gx + 486662 */ dx._0 -= 9; /* dx = Px - Gx */ sqr(t3, dx); /* t3 = (Px - Gx)^2 */ mul(dx, t2, t3); /* dx = t2 (Px - Gx)^2 */ sub(dx, dx, t1); /* dx = t2 (Px - Gx)^2 - Py^2 */ dx._0 -= 39420360; /* dx = t2 (Px - Gx)^2 - Py^2 - Gy^2 */ mul(t1, dx, BASE_R2Y); /* t1 = -Py */ if (is_negative(t1)!=0) /* sign is 1, so just copy */ cpy32(s, k); else /* sign is -1, so negate */ mula_small(s, ORDER_TIMES_8, 0, k, 32, -1);
/* reduce s mod q * (is this needed? do it just in case, it's fast anyway) */ //divmod((dstptr) t1, s, 32, order25519, 32);
/* take reciprocal of s mod q */ byte[] temp1=new byte[32]; byte[] temp2=new byte[64]; byte[] temp3=new byte[64]; cpy32(temp1, ORDER); cpy32(s, egcd32(temp2, temp3, s, temp1)); if ((s[31] & 0x80)!=0) mula_small(s, s, 0, ORDER, 32, 1); } }
/* smallest multiple of the order that's >= 2^255 */ private static final byte[] ORDER_TIMES_8 = { (byte)104, (byte)159, (byte)174, (byte)231, (byte)210, (byte)24, (byte)147, (byte)192, (byte)178, (byte)230, (byte)188, (byte)23, (byte)245, (byte)206, (byte)247, (byte)166, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)0, (byte)128 };
/* constants 2Gy and 1/(2Gy) */ private static final long10 BASE_2Y = new long10( 39999547, 18689728, 59995525, 1648697, 57546132, 24010086, 19059592, 5425144, 63499247, 16420658 ); private static final long10 BASE_R2Y = new long10( 5744, 8160848, 4790893, 13779497, 35730846, 12541209, 49101323, 30047407, 40071253, 6226132 );
private static volatile long min = Long.MAX_VALUE;
public static void main(final String[] args) {
if (args.length == 0) { System.out.println("Usage: java -cp . vanity SECRET_PREFIX [ACCT_PREFIX]"); } else { int threadCount = Runtime.getRuntime().availableProcessors(); Thread[] threads = new Thread[threadCount]; for (int i = 0; i < threadCount; i++) { Thread thread = new Thread(new Runnable() { @Override public void run() { try { while (true) { int nonce = ThreadLocalRandom.current().nextInt(Integer.MAX_VALUE) + 1; byte[] publicKey = new byte[32]; keygen(publicKey, null, MessageDigest.getInstance("SHA-256").digest((args[0] + nonce).getBytes("UTF-8"))); byte[] publicKeyHash = MessageDigest.getInstance("SHA-256").digest(publicKey); BigInteger bigInteger = new BigInteger(1, new byte[] {publicKeyHash[7], publicKeyHash[6], publicKeyHash[5], publicKeyHash[4], publicKeyHash[3], publicKeyHash[2], publicKeyHash[1], publicKeyHash[0]}); long t = bigInteger.longValue(); if (t > 0 && t < min && (args.length == 1 || String.valueOf(t).startsWith(args[1]))) { System.out.println(args[0] + nonce + " gives " + t + " account"); min = t; } } } catch (final Exception e) { System.out.println(e.toString()); } } }); thread.setDaemon(true); thread.start(); threads[i] = thread; } for (int i = 0; i < threadCount; i++) { try { threads[i].join(); } catch (InterruptedException e) { Thread.currentThread().interrupt(); } }
}
}
}
So if you want an account starting with 666666, and having a secret phrase starting with "nxt rules ", running: java vanity "nxt rules " 666666 will give you result such as: nxt rules 1623669388 gives 6666666733107667231 account (and keep trying, to get a shorter account number). Edit: Updated to use all available processors.
|