Cryptography is truly special in the 21st century because cryptography is one of the very few fields where adversarial conflict continues to heavily favor the defender. Castles are far easier to destroy than build, islands are defendable but can still be attacked, but an average person’s ECC keys are secure enough to resist even state-level actors. Cypherpunk philosophy is fundamentally about leveraging this precious asymmetry to create a world that better preserves the autonomy of the individual, and cryptoeconomics is to some extent an extension of that, except this time protecting the safety and liveness of complex systems of coordination and collaboration, rather than simply the integrity and confidentiality of private messages. Systems that consider themselves ideological heirs to the cypherpunk spirit should maintain this basic property, and be much more expensive to destroy or disrupt than they are to use and maintain.
The “cypherpunk spirit” isn’t just about idealism; making systems that are easier to defend than they are to attack is also simply sound engineering.
On medium to long time scales, humans are quite good at consensus. Even if an adversary had access to unlimited hashing power, and came out with a 51% attack of any major blockchain that reverted even the last month of history, convincing the community that this chain is legitimate is much harder than just outrunning the main chain’s hashpower. They would need to subvert block explorers, every trusted member in the community, the New York Times, archive.org, and many other sources on the internet; all in all, convincing the world that the new attack chain is the one that came first in the information technology-dense 21st century is about as hard as convincing the world that the US moon landings never happened. These social considerations are what ultimately protect any blockchain in the long term, regardless of whether or not the blockchain’s community admits it (note that Bitcoin Core does admit this primacy of the social layer).
However, a blockchain protected by social consensus alone would be far too inefficient and slow, and too easy for disagreements to continue without end (though despite all difficulties, it has happened); hence, economic consensus serves an extremely important role in protecting liveness and safety properties in the short term.
Because proof of work security can only come from block rewards (in Dominic Williams’ terms, it lacks two of the three Es), and incentives to miners can only come from the risk of them losing their future block rewards, proof of work necessarily operates on a logic of massive power incentivized into existence by massive rewards. Recovery from attacks in PoW is very hard: the first time it happens, you can hard fork to change the PoW and thereby render the attacker’s ASICs useless, but the second time you no longer have that option, and so the attacker can attack again and again. Hence, the size of the mining network has to be so large that attacks are inconceivable. Attackers of size less than X are discouraged from appearing by having the network constantly spend X every single day. I reject this logic because (i) it kills trees, and (ii) it fails to realize the cypherpunk spirit — cost of attack and cost of defense are at a 1:1 ratio, so there is no defender’s advantage.
Proof of stake breaks this symmetry by relying not on rewards for security, but rather penalties. Validators put money (“deposits”) at stake, are rewarded slightly to compensate them for locking up their capital and maintaining nodes and taking extra precaution to ensure their private key safety, but the bulk of the cost of reverting transactions comes from penalties that are hundreds or thousands of times larger than the rewards that they got in the meantime. The “one-sentence philosophy” of proof of stake is thus not “security comes from burning energy”, but rather “security comes from putting up economic value-at-loss”. A given block or state has $X security if you can prove that achieving an equal level of finalization for any conflicting block or state cannot be accomplished unless malicious nodes complicit in an attempt to make the switch pay $X worth of in-protocol penalties.
Theoretically, a majority collusion of validators may take over a proof of stake chain, and start acting maliciously. However, (i) through clever protocol design, their ability to earn extra profits through such manipulation can be limited as much as possible, and more importantly (ii) if they try to prevent new validators from joining, or execute 51% attacks, then the community can simply coordinate a hard fork and delete the offending validators’ deposits. A successful attack may cost $50 million, but the process of cleaning up the consequences will not be that much more onerous than the geth/parity consensus failure of 2016.11.25. Two days later, the blockchain and community are back on track, attackers are $50 million poorer, and the rest of the community is likely richer since the attack will have caused the value of the token to go up due to the ensuing supply crunch. That’s attack/defense asymmetry for you.
https://medium.com/@VitalikButerin/a-proof-of-stake-design-philosophy-506585978d51#.roalhqqlf