Bitcoin Forum
November 07, 2024, 08:29:17 PM *
News: Latest Bitcoin Core release: 28.0 [Torrent]
 
   Home   Help Search Login Register More  
Pages: « 1 ... 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 [252] 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 ... 329 »
  Print  
Author Topic: Bitcoin puzzle transaction ~32 BTC prize to who solves it  (Read 223661 times)
kTimesG
Member
**
Online Online

Activity: 259
Merit: 39


View Profile
May 11, 2024, 09:20:08 AM
 #5021

hi all i read the post since one year sorry for my english i found a interesting think but i does takes me further. in every elliptic curve like y^2= x^3+7 there is something interesting like :
if P(1,y1) - k times--> Q(-29/3 ,y2)
   P(2,y3) --k times--> Q(-3,y2)
 so on there is a simple math here where k is always too know independent from whcih curve we work .
 i don't want to give more information this operation is 10 times faster then k*G= and find the x value 
Too bad the points need to be on the curve. We already know about the endomorphisms.

I'd say any attempt to break a private key that involves more than a constant amount of scalar multiplications (no matter how well optimized by precomputed tables), has very few chances of success.
Any multiplication means, by definition, more than one addition, more time.

Random key -> multiply and match -> good luck waiting.

First level of magnitude reduction: don't do scalar multiplications.

Second wall to break is then the point addition (and there's one more after that, and finally one more after).  I already said too much, but I believe there's something that can run around 20x in less time (fewer computations) if we know the public key and simplify the question.  Some known details around secp256k1 help a lot.
maylabel
Newbie
*
Offline Offline

Activity: 24
Merit: 0


View Profile
May 11, 2024, 10:19:27 AM
 #5022

hi all i read the post since one year sorry for my english i found a interesting think but i does takes me further. in every elliptic curve like y^2= x^3+7 there is something interesting like :
if P(1,y1) - k times--> Q(-29/3 ,y2)
   P(2,y3) --k times--> Q(-3,y2)
 so on there is a simple math here where k is always too know independent from whcih curve we work .
 i don't want to give more information this operation is 10 times faster then k*G= and find the x value 
Too bad the points need to be on the curve. We already know about the endomorphisms.

I'd say any attempt to break a private key that involves more than a constant amount of scalar multiplications (no matter how well optimized by precomputed tables), has very few chances of success.
Any multiplication means, by definition, more than one addition, more time.

Random key -> multiply and match -> good luck waiting.

First level of magnitude reduction: don't do scalar multiplications.

Second wall to break is then the point addition (and there's one more after that, and finally one more after).  I already said too much, but I believe there's something that can run around 20x in less time (fewer computations) if we know the public key and simplify the question.  Some known details around secp256k1 help a lot.


Yeah I endorse what is kTimeG is saying.
the problems is way more deep than I even expected, honestly

I'm not specialist in secp256, not even close, but the sheer amount of calculation is above my capacities. Besides my Jupyter and R have an absolutely collapse trying to do the statistics

a simple example, for the puzzle 65 the coordinates are
X: 21769406468394979245979020739332080729679479243955596515614749275274212371227
Y:102907830890434238525231690377346540046672568029169549965500018466490455252476

you will understand very quick floating point problems, if you come from scientific field like me
besides all the shenanigans around binary calculation  Huh

One website I found fantastic is https://learnmeabitcoin.com/
This person need a award because the site is amazing.
Have a lot of calculator and they try to simplify the max possible but honestly is absurdly convoluted.
But I admire their effort, is worth it to take a look

Another stuffs I was reading is this week was

https://pure.tue.nl/ws/portalfiles/portal/128510960/BEP_BSA_298_299_300_301.pdf
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3367674
https://engineering.purdue.edu/kak/compsec/NewLectures/Lecture7.pdf

On this papers you may can guess why K3ntina is trying to push this idea of the circle: its because of the nature of the calculation, sometimes they have a sqrt(2) have on the pi series expansion in the 3order almost the same decimals where some of the addresses can be build on it.
But again, correlation is not causation: k3ntina is suffering of apophenia... very common in conspiracy theorist


again I'm not bitcoin specialist, i'm scientist so I went to my route what is: statistics
Apparently even if is a HD and this are child  wallets, the reality hass one detail: the onwer FORCED to have this structure.
This reminds me a lot of the case of the Profanity (article: https://medium.com/@rebryk/how-to-hack-a-vanity-address-generated-with-profanity-ffad61ecacd2).
Beside my cpu almost meltdown of trying to run that code, the idea from this case is is  very simple, but on bitcoin has one caveat: we dont have the extended public key and is essential on this case.
so my best next guess is to try to see if the pseudo-random numbers interfere in the wallet construction beside the owner own interference.... and Im still learning but looks like has something on that could be use to reduce the range of the search

Btw, on the k3ntina offer, I also offer a zoom meeting to discuss about it  Grin
eggsylacer
Newbie
*
Offline Offline

Activity: 8
Merit: 0


View Profile
May 11, 2024, 06:13:39 PM
 #5023

The concept of a logarithm was invented just a few centuries ago and immediately changed engineering as we know it.

Code:
import math
from mpmath import mp

def calculate_log2(decimal_value):
    log2_value = mp.log(decimal_value, 2)
    return log2_value

def calculate_reverse_log2(log2_value):
    decimal_value = mp.power(2, log2_value)
    return decimal_value

target_numbers = [
    (1, 1), (2, 3), (3, 7), (4, 8), (5, 21), (6, 49), (7, 76), (8, 224), (9, 467), (10, 514),
    (11, 1155), (12, 2683), (13, 5216), (14, 10544), (15, 26867), (16, 51510),
    (17, 95823), (18, 198669), (19, 357535), (20, 863317), (21, 1811764),
    (22, 3007503), (23, 5598802), (24, 14428676), (25, 33185509),
    (26, 54538862), (27, 111949941), (28, 227634408), (29, 400708894),
    (30, 1033162084), (31, 2102388551), (32, 3093472814), (33, 7137437912),
    (34, 14133072157), (35, 20112871792), (36, 42387769980), (37, 100251560595),
    (38, 146971536592), (39, 323724968937), (40, 1003651412950),
    (41, 1458252205147), (42, 2895374552463), (43, 7409811047825),
    (44, 15404761757071), (45, 19996463086597), (46, 51408670348612),
    (47, 119666659114170), (48, 191206974700443), (49, 409118905032525),
    (50, 611140496167764), (51, 2058769515153876), (52, 4216495639600700),
    (53, 6763683971478124), (54, 9974455244496707), (55, 30045390491869460),
    (56, 44218742292676575), (57, 138245758910846492), (58, 199976667976342049),
    (59, 525070384258266191), (60, 1135041350219496382), (61, 1425787542618654982),
    (62, 3908372542507822062), (63, 8993229949524469768),
    (64, 17799667357578236628), (65, 30568377312064202855)
]

mp.dps = 20  # Set the high decimal precision

for ordinal, decimal_value in target_numbers:
    log2_result = calculate_log2(decimal_value)
    reverse_result = calculate_reverse_log2(log2_result)
    print(f"Puzzle:{ordinal}: Log(2) for {decimal_value} is approximately {log2_result}. Reverse calculation: {reverse_result}")

Look result of this madness:

Puzzle:1: Log(2) for 1 is approximately 0.0. Reverse calculation: 1.0
Puzzle:2: Log(2) for 3 is approximately 1.5849625007211561815. Reverse calculation: 3.0
Puzzle:3: Log(2) for 7 is approximately 2.8073549220576041074. Reverse calculation: 7.0
Puzzle:4: Log(2) for 8 is approximately 3.0. Reverse calculation: 8.0
Puzzle:5: Log(2) for 21 is approximately 4.3923174227787602889. Reverse calculation: 21.0
Puzzle:6: Log(2) for 49 is approximately 5.6147098441152082149. Reverse calculation: 49.0
Puzzle:7: Log(2) for 76 is approximately 6.2479275134435854938. Reverse calculation: 76.0
Puzzle:8: Log(2) for 224 is approximately 7.8073549220576041074. Reverse calculation: 224.0
Puzzle:9: Log(2) for 467 is approximately 8.8672787397096619133. Reverse calculation: 467.0
Puzzle:10: Log(2) for 514 is approximately 9.0056245491938781069. Reverse calculation: 514.0
Puzzle:11: Log(2) for 1155 is approximately 10.173677136303419893. Reverse calculation: 1155.0
Puzzle:12: Log(2) for 2683 is approximately 11.389631339260521112. Reverse calculation: 2683.0
Puzzle:13: Log(2) for 5216 is approximately 12.348728154231077553. Reverse calculation: 5216.0
Puzzle:14: Log(2) for 10544 is approximately 13.364134655008051742. Reverse calculation: 10544.0
Puzzle:15: Log(2) for 26867 is approximately 14.713547616912692731. Reverse calculation: 26867.0
Puzzle:16: Log(2) for 51510 is approximately 15.652564919610652675. Reverse calculation: 51510.0
Puzzle:17: Log(2) for 95823 is approximately 16.548084361224413154. Reverse calculation: 95823.0
Puzzle:18: Log(2) for 198669 is approximately 17.600007248708430135. Reverse calculation: 198669.0
Puzzle:19: Log(2) for 357535 is approximately 18.447724952285439321. Reverse calculation: 357535.0
Puzzle:20: Log(2) for 863317 is approximately 19.719530872026151871. Reverse calculation: 863317.00000000000001
Puzzle:21: Log(2) for 1811764 is approximately 20.788963611792287227. Reverse calculation: 1811764.0
Puzzle:22: Log(2) for 3007503 is approximately 21.520134745822105762. Reverse calculation: 3007503.0
Puzzle:23: Log(2) for 5598802 is approximately 22.416686729787820277. Reverse calculation: 5598802.0
Puzzle:24: Log(2) for 14428676 is approximately 23.782435585948494073. Reverse calculation: 14428676.0
Puzzle:25: Log(2) for 33185509 is approximately 24.984050066697330736. Reverse calculation: 33185509.0
Puzzle:26: Log(2) for 54538862 is approximately 25.700781261712878111. Reverse calculation: 54538862.0
Puzzle:27: Log(2) for 111949941 is approximately 26.738278526958637998. Reverse calculation: 111949941.0
Puzzle:28: Log(2) for 227634408 is approximately 27.762143403294801415. Reverse calculation: 227634408.0
Puzzle:29: Log(2) for 400708894 is approximately 28.577979290797464122. Reverse calculation: 400708894.0
Puzzle:30: Log(2) for 1033162084 is approximately 29.944419458082398243. Reverse calculation: 1033162084.0
Puzzle:31: Log(2) for 2102388551 is approximately 30.969382178280594153. Reverse calculation: 2102388551.0
Puzzle:32: Log(2) for 3093472814 is approximately 31.526580209327912218. Reverse calculation: 3093472814.0
Puzzle:33: Log(2) for 7137437912 is approximately 32.732759144627864676. Reverse calculation: 7137437912.0000000001
Puzzle:34: Log(2) for 14133072157 is approximately 33.718356052472843908. Reverse calculation: 14133072157.0
Puzzle:35: Log(2) for 20112871792 is approximately 34.22740003868583903. Reverse calculation: 20112871792.0
Puzzle:36: Log(2) for 42387769980 is approximately 35.302929017096708804. Reverse calculation: 42387769980.000000001
Puzzle:37: Log(2) for 100251560595 is approximately 36.544833738746849477. Reverse calculation: 100251560595.0
Puzzle:38: Log(2) for 146971536592 is approximately 37.096745824716051977. Reverse calculation: 146971536592.0
Puzzle:39: Log(2) for 323724968937 is approximately 38.235977688802476225. Reverse calculation: 323724968937.0
Puzzle:40: Log(2) for 1003651412950 is approximately 39.868395419757349213. Reverse calculation: 1003651412950.0
Puzzle:41: Log(2) for 1458252205147 is approximately 40.407377394423366271. Reverse calculation: 1458252205147.0
Puzzle:42: Log(2) for 2895374552463 is approximately 41.396887129359569265. Reverse calculation: 2895374552463.0
Puzzle:43: Log(2) for 7409811047825 is approximately 42.752573892536879788. Reverse calculation: 7409811047825.0
Puzzle:44: Log(2) for 15404761757071 is approximately 43.808441604030467369. Reverse calculation: 15404761757071.0
Puzzle:45: Log(2) for 19996463086597 is approximately 44.184810076602017917. Reverse calculation: 19996463086597.0
Puzzle:46: Log(2) for 51408670348612 is approximately 45.547076931749783679. Reverse calculation: 51408670348612.0
Puzzle:47: Log(2) for 119666659114170 is approximately 46.766014580697737785. Reverse calculation: 119666659114170.0
Puzzle:48: Log(2) for 191206974700443 is approximately 47.442128478217754077. Reverse calculation: 191206974700443.0
Puzzle:49: Log(2) for 409118905032525 is approximately 48.539513532885657356. Reverse calculation: 409118905032525.00001
Puzzle:50: Log(2) for 611140496167764 is approximately 49.118497410306637905. Reverse calculation: 611140496167764.0
Puzzle:51: Log(2) for 2058769515153876 is approximately 50.870703748687580964. Reverse calculation: 2058769515153876.0
Puzzle:52: Log(2) for 4216495639600700 is approximately 51.904965885818221825. Reverse calculation: 4216495639600700.0
Puzzle:53: Log(2) for 6763683971478124 is approximately 52.586730675690989872. Reverse calculation: 6763683971478124.0
Puzzle:54: Log(2) for 9974455244496707 is approximately 53.147159473916182081. Reverse calculation: 9974455244496706.9998
Puzzle:55: Log(2) for 30045390491869460 is approximately 54.737993190511333013. Reverse calculation: 30045390491869460.0
Puzzle:56: Log(2) for 44218742292676575 is approximately 55.295507509568065689. Reverse calculation: 44218742292676575.0
Puzzle:57: Log(2) for 138245758910846492 is approximately 56.940012835374135824. Reverse calculation: 138245758910846492.0
Puzzle:58: Log(2) for 199976667976342049 is approximately 57.472609298293031082. Reverse calculation: 199976667976342049.0
Puzzle:59: Log(2) for 525070384258266191 is approximately 58.865288438176815787. Reverse calculation: 525070384258266190.99
Puzzle:60: Log(2) for 1135041350219496382 is approximately 59.977450564669282481. Reverse calculation: 1135041350219496382.0
Puzzle:61: Log(2) for 1425787542618654982 is approximately 60.306464728992728608. Reverse calculation: 1425787542618654982.0
Puzzle:62: Log(2) for 3908372542507822062 is approximately 61.761273698209320329. Reverse calculation: 3908372542507822061.9
Puzzle:63: Log(2) for 8993229949524469768 is approximately 62.963545065677060031. Reverse calculation: 8993229949524469767.8
Puzzle:64: Log(2) for 17799667357578236628 is approximately 63.948484083037149251. Reverse calculation: 17799667357578236628.0
Puzzle:65: Log(2) for 30568377312064202855 is approximately 64.728673773273428832. Reverse calculation: 30568377312064202855.0

So, puzzle 66 private key is from
65.000000000000000000  log(2)
to
66.000000000000000000  log(2)


You can test puzzle 15 (or any) with this formula :

Code:
from mpmath import mp
import random
import secp256k1 as ice
import sys

def calculate_reverse_log2(log2_value):
    decimal_value = mp.power(2, log2_value)
    return decimal_value

mp.dps = 20  # Set the decimal precision to a sufficiently high value
target = "1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW"

while True:
    random_log2_value = mp.mpf(random.uniform(14.0, 15.0))
    reverse_result = calculate_reverse_log2(random_log2_value)
    HEX = "%064x" % int(reverse_result)
    dec = int(HEX, 16)
    caddr = ice.privatekey_to_address(0, True, dec)
    message = "[+] {}".format(dec);messages = [];messages.append(message);output = ''.join(messages) + "\r";sys.stdout.write(output);sys.stdout.flush()
    if target in caddr:
       wifc = ice.btc_pvk_to_wif(HEX)
       print(f"\n\033[32m[+] PUZZLE SOLVED: {wifc} \033[0m")
       break

Result is instant.

I can not see pattern here... Can you see ?? Grin

You can even do regression analysis
https://i.ibb.co/jJYVpd6/Figure-1.png

I'm lost between the size of the numbers and the precision required here . . .

There is no pattern. But it's not random either according to the polynomial analysis. There is an exact math formula for making this puzzle with some script, errors = ZERO.  With high decimal precision (mp.dps = 20 at least)
And the formula is in the creator's mind.

Your polynomial regression plot suggests that the source of this generation is the same.
eggsylacer
Newbie
*
Offline Offline

Activity: 8
Merit: 0


View Profile
May 11, 2024, 06:47:47 PM
 #5024

hi all i read the post since one year sorry for my english i found a interesting think but i does takes me further. in every elliptic curve like y^2= x^3+7 there is something interesting like :
if P(1,y1) - k times--> Q(-29/3 ,y2)
   P(2,y3) --k times--> Q(-3,y2)
 so on there is a simple math here where k is always too know independent from whcih curve we work .
 i don't want to give more information this operation is 10 times faster then k*G= and find the x value 


I think to solve the equation we need to introduce a third Z axis
eggsylacer
Newbie
*
Offline Offline

Activity: 8
Merit: 0


View Profile
May 11, 2024, 08:22:48 PM
 #5025

wish me luck, current speed is 100K keys per sec.

100kk/s is very low. 
You're better off using keyhunt by alberto
You may get +1Mk/s even on a potato CPU



Perhaps his algorithm works exponentially? That is, the time to find the key decreases exponentially.
eggsylacer
Newbie
*
Offline Offline

Activity: 8
Merit: 0


View Profile
May 11, 2024, 09:00:38 PM
 #5026

I formulated the question: is it possible to create a number system in which:

1=1
2=3
3=7
4=8
5=21
6=49
.....

Also I have a question, how did the creator access the addresses above puzl#160 repeatedly? I.e. he was transferring btc from these addresses to smaller addresses. Did he really save every key to the address and "manually" (using an algorithm) spell them out?
pbies
Full Member
***
Offline Offline

Activity: 297
Merit: 133



View Profile
May 11, 2024, 10:51:52 PM
 #5027

If you guys are saying that pubkey is enough to take over any puzzle tx,
then it can be done with any tx that is in mempool.

BTC: bc1qmrexlspd24kevspp42uvjg7sjwm8xcf9w86h5k
maylabel
Newbie
*
Offline Offline

Activity: 24
Merit: 0


View Profile
May 11, 2024, 11:29:33 PM
 #5028

The concept of a logarithm was invented just a few centuries ago and immediately changed engineering as we know it.

Code:
import math
from mpmath import mp

def calculate_log2(decimal_value):
    log2_value = mp.log(decimal_value, 2)
    return log2_value

def calculate_reverse_log2(log2_value):
    decimal_value = mp.power(2, log2_value)
    return decimal_value

target_numbers = [
    (1, 1), (2, 3), (3, 7), (4, 8), (5, 21), (6, 49), (7, 76), (8, 224), (9, 467), (10, 514),
    (11, 1155), (12, 2683), (13, 5216), (14, 10544), (15, 26867), (16, 51510),
    (17, 95823), (18, 198669), (19, 357535), (20, 863317), (21, 1811764),
    (22, 3007503), (23, 5598802), (24, 14428676), (25, 33185509),
    (26, 54538862), (27, 111949941), (28, 227634408), (29, 400708894),
    (30, 1033162084), (31, 2102388551), (32, 3093472814), (33, 7137437912),
    (34, 14133072157), (35, 20112871792), (36, 42387769980), (37, 100251560595),
    (38, 146971536592), (39, 323724968937), (40, 1003651412950),
    (41, 1458252205147), (42, 2895374552463), (43, 7409811047825),
    (44, 15404761757071), (45, 19996463086597), (46, 51408670348612),
    (47, 119666659114170), (48, 191206974700443), (49, 409118905032525),
    (50, 611140496167764), (51, 2058769515153876), (52, 4216495639600700),
    (53, 6763683971478124), (54, 9974455244496707), (55, 30045390491869460),
    (56, 44218742292676575), (57, 138245758910846492), (58, 199976667976342049),
    (59, 525070384258266191), (60, 1135041350219496382), (61, 1425787542618654982),
    (62, 3908372542507822062), (63, 8993229949524469768),
    (64, 17799667357578236628), (65, 30568377312064202855)
]

mp.dps = 20  # Set the high decimal precision

for ordinal, decimal_value in target_numbers:
    log2_result = calculate_log2(decimal_value)
    reverse_result = calculate_reverse_log2(log2_result)
    print(f"Puzzle:{ordinal}: Log(2) for {decimal_value} is approximately {log2_result}. Reverse calculation: {reverse_result}")

Look result of this madness:

Puzzle:1: Log(2) for 1 is approximately 0.0. Reverse calculation: 1.0
Puzzle:2: Log(2) for 3 is approximately 1.5849625007211561815. Reverse calculation: 3.0
Puzzle:3: Log(2) for 7 is approximately 2.8073549220576041074. Reverse calculation: 7.0
Puzzle:4: Log(2) for 8 is approximately 3.0. Reverse calculation: 8.0
Puzzle:5: Log(2) for 21 is approximately 4.3923174227787602889. Reverse calculation: 21.0
Puzzle:6: Log(2) for 49 is approximately 5.6147098441152082149. Reverse calculation: 49.0
Puzzle:7: Log(2) for 76 is approximately 6.2479275134435854938. Reverse calculation: 76.0
Puzzle:8: Log(2) for 224 is approximately 7.8073549220576041074. Reverse calculation: 224.0
Puzzle:9: Log(2) for 467 is approximately 8.8672787397096619133. Reverse calculation: 467.0
Puzzle:10: Log(2) for 514 is approximately 9.0056245491938781069. Reverse calculation: 514.0
Puzzle:11: Log(2) for 1155 is approximately 10.173677136303419893. Reverse calculation: 1155.0
Puzzle:12: Log(2) for 2683 is approximately 11.389631339260521112. Reverse calculation: 2683.0
Puzzle:13: Log(2) for 5216 is approximately 12.348728154231077553. Reverse calculation: 5216.0
Puzzle:14: Log(2) for 10544 is approximately 13.364134655008051742. Reverse calculation: 10544.0
Puzzle:15: Log(2) for 26867 is approximately 14.713547616912692731. Reverse calculation: 26867.0
Puzzle:16: Log(2) for 51510 is approximately 15.652564919610652675. Reverse calculation: 51510.0
Puzzle:17: Log(2) for 95823 is approximately 16.548084361224413154. Reverse calculation: 95823.0
Puzzle:18: Log(2) for 198669 is approximately 17.600007248708430135. Reverse calculation: 198669.0
Puzzle:19: Log(2) for 357535 is approximately 18.447724952285439321. Reverse calculation: 357535.0
Puzzle:20: Log(2) for 863317 is approximately 19.719530872026151871. Reverse calculation: 863317.00000000000001
Puzzle:21: Log(2) for 1811764 is approximately 20.788963611792287227. Reverse calculation: 1811764.0
Puzzle:22: Log(2) for 3007503 is approximately 21.520134745822105762. Reverse calculation: 3007503.0
Puzzle:23: Log(2) for 5598802 is approximately 22.416686729787820277. Reverse calculation: 5598802.0
Puzzle:24: Log(2) for 14428676 is approximately 23.782435585948494073. Reverse calculation: 14428676.0
Puzzle:25: Log(2) for 33185509 is approximately 24.984050066697330736. Reverse calculation: 33185509.0
Puzzle:26: Log(2) for 54538862 is approximately 25.700781261712878111. Reverse calculation: 54538862.0
Puzzle:27: Log(2) for 111949941 is approximately 26.738278526958637998. Reverse calculation: 111949941.0
Puzzle:28: Log(2) for 227634408 is approximately 27.762143403294801415. Reverse calculation: 227634408.0
Puzzle:29: Log(2) for 400708894 is approximately 28.577979290797464122. Reverse calculation: 400708894.0
Puzzle:30: Log(2) for 1033162084 is approximately 29.944419458082398243. Reverse calculation: 1033162084.0
Puzzle:31: Log(2) for 2102388551 is approximately 30.969382178280594153. Reverse calculation: 2102388551.0
Puzzle:32: Log(2) for 3093472814 is approximately 31.526580209327912218. Reverse calculation: 3093472814.0
Puzzle:33: Log(2) for 7137437912 is approximately 32.732759144627864676. Reverse calculation: 7137437912.0000000001
Puzzle:34: Log(2) for 14133072157 is approximately 33.718356052472843908. Reverse calculation: 14133072157.0
Puzzle:35: Log(2) for 20112871792 is approximately 34.22740003868583903. Reverse calculation: 20112871792.0
Puzzle:36: Log(2) for 42387769980 is approximately 35.302929017096708804. Reverse calculation: 42387769980.000000001
Puzzle:37: Log(2) for 100251560595 is approximately 36.544833738746849477. Reverse calculation: 100251560595.0
Puzzle:38: Log(2) for 146971536592 is approximately 37.096745824716051977. Reverse calculation: 146971536592.0
Puzzle:39: Log(2) for 323724968937 is approximately 38.235977688802476225. Reverse calculation: 323724968937.0
Puzzle:40: Log(2) for 1003651412950 is approximately 39.868395419757349213. Reverse calculation: 1003651412950.0
Puzzle:41: Log(2) for 1458252205147 is approximately 40.407377394423366271. Reverse calculation: 1458252205147.0
Puzzle:42: Log(2) for 2895374552463 is approximately 41.396887129359569265. Reverse calculation: 2895374552463.0
Puzzle:43: Log(2) for 7409811047825 is approximately 42.752573892536879788. Reverse calculation: 7409811047825.0
Puzzle:44: Log(2) for 15404761757071 is approximately 43.808441604030467369. Reverse calculation: 15404761757071.0
Puzzle:45: Log(2) for 19996463086597 is approximately 44.184810076602017917. Reverse calculation: 19996463086597.0
Puzzle:46: Log(2) for 51408670348612 is approximately 45.547076931749783679. Reverse calculation: 51408670348612.0
Puzzle:47: Log(2) for 119666659114170 is approximately 46.766014580697737785. Reverse calculation: 119666659114170.0
Puzzle:48: Log(2) for 191206974700443 is approximately 47.442128478217754077. Reverse calculation: 191206974700443.0
Puzzle:49: Log(2) for 409118905032525 is approximately 48.539513532885657356. Reverse calculation: 409118905032525.00001
Puzzle:50: Log(2) for 611140496167764 is approximately 49.118497410306637905. Reverse calculation: 611140496167764.0
Puzzle:51: Log(2) for 2058769515153876 is approximately 50.870703748687580964. Reverse calculation: 2058769515153876.0
Puzzle:52: Log(2) for 4216495639600700 is approximately 51.904965885818221825. Reverse calculation: 4216495639600700.0
Puzzle:53: Log(2) for 6763683971478124 is approximately 52.586730675690989872. Reverse calculation: 6763683971478124.0
Puzzle:54: Log(2) for 9974455244496707 is approximately 53.147159473916182081. Reverse calculation: 9974455244496706.9998
Puzzle:55: Log(2) for 30045390491869460 is approximately 54.737993190511333013. Reverse calculation: 30045390491869460.0
Puzzle:56: Log(2) for 44218742292676575 is approximately 55.295507509568065689. Reverse calculation: 44218742292676575.0
Puzzle:57: Log(2) for 138245758910846492 is approximately 56.940012835374135824. Reverse calculation: 138245758910846492.0
Puzzle:58: Log(2) for 199976667976342049 is approximately 57.472609298293031082. Reverse calculation: 199976667976342049.0
Puzzle:59: Log(2) for 525070384258266191 is approximately 58.865288438176815787. Reverse calculation: 525070384258266190.99
Puzzle:60: Log(2) for 1135041350219496382 is approximately 59.977450564669282481. Reverse calculation: 1135041350219496382.0
Puzzle:61: Log(2) for 1425787542618654982 is approximately 60.306464728992728608. Reverse calculation: 1425787542618654982.0
Puzzle:62: Log(2) for 3908372542507822062 is approximately 61.761273698209320329. Reverse calculation: 3908372542507822061.9
Puzzle:63: Log(2) for 8993229949524469768 is approximately 62.963545065677060031. Reverse calculation: 8993229949524469767.8
Puzzle:64: Log(2) for 17799667357578236628 is approximately 63.948484083037149251. Reverse calculation: 17799667357578236628.0
Puzzle:65: Log(2) for 30568377312064202855 is approximately 64.728673773273428832. Reverse calculation: 30568377312064202855.0

So, puzzle 66 private key is from
65.000000000000000000  log(2)
to
66.000000000000000000  log(2)


You can test puzzle 15 (or any) with this formula :

Code:
from mpmath import mp
import random
import secp256k1 as ice
import sys

def calculate_reverse_log2(log2_value):
    decimal_value = mp.power(2, log2_value)
    return decimal_value

mp.dps = 20  # Set the decimal precision to a sufficiently high value
target = "1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW"

while True:
    random_log2_value = mp.mpf(random.uniform(14.0, 15.0))
    reverse_result = calculate_reverse_log2(random_log2_value)
    HEX = "%064x" % int(reverse_result)
    dec = int(HEX, 16)
    caddr = ice.privatekey_to_address(0, True, dec)
    message = "[+] {}".format(dec);messages = [];messages.append(message);output = ''.join(messages) + "\r";sys.stdout.write(output);sys.stdout.flush()
    if target in caddr:
       wifc = ice.btc_pvk_to_wif(HEX)
       print(f"\n\033[32m[+] PUZZLE SOLVED: {wifc} \033[0m")
       break

Result is instant.

I can not see pattern here... Can you see ?? Grin

You can even do regression analysis
https://i.ibb.co/jJYVpd6/Figure-1.png

I'm lost between the size of the numbers and the precision required here . . .

There is no pattern. But it's not random either according to the polynomial analysis. There is an exact math formula for making this puzzle with some script, errors = ZERO.  With high decimal precision (mp.dps = 20 at least)
And the formula is in the creator's mind.

Your polynomial regression plot suggests that the source of this generation is the same.

OMG, sorry if their any scientist here, but this IS THE NATURE OF THE PUZZLE !!! Roll Eyes

It IS BUILDING on powers of 2 ranges of hex.
puzzle 65 - 2^64 to 2^65
puzzle 64 - 2^63 to 2^64
puzzle 63 - 2^62 to 2^63 and so on...

so its OBVIOUS will appear a power of 2 graph.
Now I invited you to the the standard deviation and realize the size of problem...

This is NOT what I pointed out...
The reality is: when you do a HD wallet with the child ( there are 213 childs from the original) is very hard to create on deterministic range of hex.
The fact you need the parent extended public key, is because you need the chain code (32 bytes) to do the math.
Its not a simple factor....

That's why remembered me a lot how profanity works
But is crucial to understand first how HD wallets works btw
nomachine
Member
**
Offline Offline

Activity: 476
Merit: 35


View Profile
May 12, 2024, 07:52:26 AM
Last edit: May 12, 2024, 08:03:40 AM by nomachine
 #5029

If you guys are saying that pubkey is enough to take over any puzzle tx,
then it can be done with any tx that is in mempool.

It is possible, but it requires knowledge of the private key range with a minimum precision width of Puzzle 30 scale, so that you could brute-force the private key on a potato PC. The key thing here is that we know the exact ranges of the keys for puzzles. And on too big like Puzzle 130, that factor doesn't help us either. Due to lack of hardware.

bc1qdwnxr7s08xwelpjy3cc52rrxg63xsmagv50fa8
eggsylacer
Newbie
*
Offline Offline

Activity: 8
Merit: 0


View Profile
May 12, 2024, 07:58:27 AM
 #5030

The concept of a logarithm was invented just a few centuries ago and immediately changed engineering as we know it.

Code:
import math
from mpmath import mp

def calculate_log2(decimal_value):
    log2_value = mp.log(decimal_value, 2)
    return log2_value

def calculate_reverse_log2(log2_value):
    decimal_value = mp.power(2, log2_value)
    return decimal_value

target_numbers = [
    (1, 1), (2, 3), (3, 7), (4, 8), (5, 21), (6, 49), (7, 76), (8, 224), (9, 467), (10, 514),
    (11, 1155), (12, 2683), (13, 5216), (14, 10544), (15, 26867), (16, 51510),
    (17, 95823), (18, 198669), (19, 357535), (20, 863317), (21, 1811764),
    (22, 3007503), (23, 5598802), (24, 14428676), (25, 33185509),
    (26, 54538862), (27, 111949941), (28, 227634408), (29, 400708894),
    (30, 1033162084), (31, 2102388551), (32, 3093472814), (33, 7137437912),
    (34, 14133072157), (35, 20112871792), (36, 42387769980), (37, 100251560595),
    (38, 146971536592), (39, 323724968937), (40, 1003651412950),
    (41, 1458252205147), (42, 2895374552463), (43, 7409811047825),
    (44, 15404761757071), (45, 19996463086597), (46, 51408670348612),
    (47, 119666659114170), (48, 191206974700443), (49, 409118905032525),
    (50, 611140496167764), (51, 2058769515153876), (52, 4216495639600700),
    (53, 6763683971478124), (54, 9974455244496707), (55, 30045390491869460),
    (56, 44218742292676575), (57, 138245758910846492), (58, 199976667976342049),
    (59, 525070384258266191), (60, 1135041350219496382), (61, 1425787542618654982),
    (62, 3908372542507822062), (63, 8993229949524469768),
    (64, 17799667357578236628), (65, 30568377312064202855)
]

mp.dps = 20  # Set the high decimal precision

for ordinal, decimal_value in target_numbers:
    log2_result = calculate_log2(decimal_value)
    reverse_result = calculate_reverse_log2(log2_result)
    print(f"Puzzle:{ordinal}: Log(2) for {decimal_value} is approximately {log2_result}. Reverse calculation: {reverse_result}")

Look result of this madness:

Puzzle:1: Log(2) for 1 is approximately 0.0. Reverse calculation: 1.0
Puzzle:2: Log(2) for 3 is approximately 1.5849625007211561815. Reverse calculation: 3.0
Puzzle:3: Log(2) for 7 is approximately 2.8073549220576041074. Reverse calculation: 7.0
Puzzle:4: Log(2) for 8 is approximately 3.0. Reverse calculation: 8.0
Puzzle:5: Log(2) for 21 is approximately 4.3923174227787602889. Reverse calculation: 21.0
Puzzle:6: Log(2) for 49 is approximately 5.6147098441152082149. Reverse calculation: 49.0
Puzzle:7: Log(2) for 76 is approximately 6.2479275134435854938. Reverse calculation: 76.0
Puzzle:8: Log(2) for 224 is approximately 7.8073549220576041074. Reverse calculation: 224.0
Puzzle:9: Log(2) for 467 is approximately 8.8672787397096619133. Reverse calculation: 467.0
Puzzle:10: Log(2) for 514 is approximately 9.0056245491938781069. Reverse calculation: 514.0
Puzzle:11: Log(2) for 1155 is approximately 10.173677136303419893. Reverse calculation: 1155.0
Puzzle:12: Log(2) for 2683 is approximately 11.389631339260521112. Reverse calculation: 2683.0
Puzzle:13: Log(2) for 5216 is approximately 12.348728154231077553. Reverse calculation: 5216.0
Puzzle:14: Log(2) for 10544 is approximately 13.364134655008051742. Reverse calculation: 10544.0
Puzzle:15: Log(2) for 26867 is approximately 14.713547616912692731. Reverse calculation: 26867.0
Puzzle:16: Log(2) for 51510 is approximately 15.652564919610652675. Reverse calculation: 51510.0
Puzzle:17: Log(2) for 95823 is approximately 16.548084361224413154. Reverse calculation: 95823.0
Puzzle:18: Log(2) for 198669 is approximately 17.600007248708430135. Reverse calculation: 198669.0
Puzzle:19: Log(2) for 357535 is approximately 18.447724952285439321. Reverse calculation: 357535.0
Puzzle:20: Log(2) for 863317 is approximately 19.719530872026151871. Reverse calculation: 863317.00000000000001
Puzzle:21: Log(2) for 1811764 is approximately 20.788963611792287227. Reverse calculation: 1811764.0
Puzzle:22: Log(2) for 3007503 is approximately 21.520134745822105762. Reverse calculation: 3007503.0
Puzzle:23: Log(2) for 5598802 is approximately 22.416686729787820277. Reverse calculation: 5598802.0
Puzzle:24: Log(2) for 14428676 is approximately 23.782435585948494073. Reverse calculation: 14428676.0
Puzzle:25: Log(2) for 33185509 is approximately 24.984050066697330736. Reverse calculation: 33185509.0
Puzzle:26: Log(2) for 54538862 is approximately 25.700781261712878111. Reverse calculation: 54538862.0
Puzzle:27: Log(2) for 111949941 is approximately 26.738278526958637998. Reverse calculation: 111949941.0
Puzzle:28: Log(2) for 227634408 is approximately 27.762143403294801415. Reverse calculation: 227634408.0
Puzzle:29: Log(2) for 400708894 is approximately 28.577979290797464122. Reverse calculation: 400708894.0
Puzzle:30: Log(2) for 1033162084 is approximately 29.944419458082398243. Reverse calculation: 1033162084.0
Puzzle:31: Log(2) for 2102388551 is approximately 30.969382178280594153. Reverse calculation: 2102388551.0
Puzzle:32: Log(2) for 3093472814 is approximately 31.526580209327912218. Reverse calculation: 3093472814.0
Puzzle:33: Log(2) for 7137437912 is approximately 32.732759144627864676. Reverse calculation: 7137437912.0000000001
Puzzle:34: Log(2) for 14133072157 is approximately 33.718356052472843908. Reverse calculation: 14133072157.0
Puzzle:35: Log(2) for 20112871792 is approximately 34.22740003868583903. Reverse calculation: 20112871792.0
Puzzle:36: Log(2) for 42387769980 is approximately 35.302929017096708804. Reverse calculation: 42387769980.000000001
Puzzle:37: Log(2) for 100251560595 is approximately 36.544833738746849477. Reverse calculation: 100251560595.0
Puzzle:38: Log(2) for 146971536592 is approximately 37.096745824716051977. Reverse calculation: 146971536592.0
Puzzle:39: Log(2) for 323724968937 is approximately 38.235977688802476225. Reverse calculation: 323724968937.0
Puzzle:40: Log(2) for 1003651412950 is approximately 39.868395419757349213. Reverse calculation: 1003651412950.0
Puzzle:41: Log(2) for 1458252205147 is approximately 40.407377394423366271. Reverse calculation: 1458252205147.0
Puzzle:42: Log(2) for 2895374552463 is approximately 41.396887129359569265. Reverse calculation: 2895374552463.0
Puzzle:43: Log(2) for 7409811047825 is approximately 42.752573892536879788. Reverse calculation: 7409811047825.0
Puzzle:44: Log(2) for 15404761757071 is approximately 43.808441604030467369. Reverse calculation: 15404761757071.0
Puzzle:45: Log(2) for 19996463086597 is approximately 44.184810076602017917. Reverse calculation: 19996463086597.0
Puzzle:46: Log(2) for 51408670348612 is approximately 45.547076931749783679. Reverse calculation: 51408670348612.0
Puzzle:47: Log(2) for 119666659114170 is approximately 46.766014580697737785. Reverse calculation: 119666659114170.0
Puzzle:48: Log(2) for 191206974700443 is approximately 47.442128478217754077. Reverse calculation: 191206974700443.0
Puzzle:49: Log(2) for 409118905032525 is approximately 48.539513532885657356. Reverse calculation: 409118905032525.00001
Puzzle:50: Log(2) for 611140496167764 is approximately 49.118497410306637905. Reverse calculation: 611140496167764.0
Puzzle:51: Log(2) for 2058769515153876 is approximately 50.870703748687580964. Reverse calculation: 2058769515153876.0
Puzzle:52: Log(2) for 4216495639600700 is approximately 51.904965885818221825. Reverse calculation: 4216495639600700.0
Puzzle:53: Log(2) for 6763683971478124 is approximately 52.586730675690989872. Reverse calculation: 6763683971478124.0
Puzzle:54: Log(2) for 9974455244496707 is approximately 53.147159473916182081. Reverse calculation: 9974455244496706.9998
Puzzle:55: Log(2) for 30045390491869460 is approximately 54.737993190511333013. Reverse calculation: 30045390491869460.0
Puzzle:56: Log(2) for 44218742292676575 is approximately 55.295507509568065689. Reverse calculation: 44218742292676575.0
Puzzle:57: Log(2) for 138245758910846492 is approximately 56.940012835374135824. Reverse calculation: 138245758910846492.0
Puzzle:58: Log(2) for 199976667976342049 is approximately 57.472609298293031082. Reverse calculation: 199976667976342049.0
Puzzle:59: Log(2) for 525070384258266191 is approximately 58.865288438176815787. Reverse calculation: 525070384258266190.99
Puzzle:60: Log(2) for 1135041350219496382 is approximately 59.977450564669282481. Reverse calculation: 1135041350219496382.0
Puzzle:61: Log(2) for 1425787542618654982 is approximately 60.306464728992728608. Reverse calculation: 1425787542618654982.0
Puzzle:62: Log(2) for 3908372542507822062 is approximately 61.761273698209320329. Reverse calculation: 3908372542507822061.9
Puzzle:63: Log(2) for 8993229949524469768 is approximately 62.963545065677060031. Reverse calculation: 8993229949524469767.8
Puzzle:64: Log(2) for 17799667357578236628 is approximately 63.948484083037149251. Reverse calculation: 17799667357578236628.0
Puzzle:65: Log(2) for 30568377312064202855 is approximately 64.728673773273428832. Reverse calculation: 30568377312064202855.0

So, puzzle 66 private key is from
65.000000000000000000  log(2)
to
66.000000000000000000  log(2)


You can test puzzle 15 (or any) with this formula :

Code:
from mpmath import mp
import random
import secp256k1 as ice
import sys

def calculate_reverse_log2(log2_value):
    decimal_value = mp.power(2, log2_value)
    return decimal_value

mp.dps = 20  # Set the decimal precision to a sufficiently high value
target = "1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW"

while True:
    random_log2_value = mp.mpf(random.uniform(14.0, 15.0))
    reverse_result = calculate_reverse_log2(random_log2_value)
    HEX = "%064x" % int(reverse_result)
    dec = int(HEX, 16)
    caddr = ice.privatekey_to_address(0, True, dec)
    message = "[+] {}".format(dec);messages = [];messages.append(message);output = ''.join(messages) + "\r";sys.stdout.write(output);sys.stdout.flush()
    if target in caddr:
       wifc = ice.btc_pvk_to_wif(HEX)
       print(f"\n\033[32m[+] PUZZLE SOLVED: {wifc} \033[0m")
       break

Result is instant.

I can not see pattern here... Can you see ?? Grin

You can even do regression analysis
https://i.ibb.co/jJYVpd6/Figure-1.png

I'm lost between the size of the numbers and the precision required here . . .

There is no pattern. But it's not random either according to the polynomial analysis. There is an exact math formula for making this puzzle with some script, errors = ZERO.  With high decimal precision (mp.dps = 20 at least)
And the formula is in the creator's mind.

Your polynomial regression plot suggests that the source of this generation is the same.

OMG, sorry if their any scientist here, but this IS THE NATURE OF THE PUZZLE !!! Roll Eyes

It IS BUILDING on powers of 2 ranges of hex.
puzzle 65 - 2^64 to 2^65
puzzle 64 - 2^63 to 2^64
puzzle 63 - 2^62 to 2^63 and so on...

so its OBVIOUS will appear a power of 2 graph.
Now I invited you to the the standard deviation and realize the size of problem...

This is NOT what I pointed out...
The reality is: when you do a HD wallet with the child ( there are 213 childs from the original) is very hard to create on deterministic range of hex.
The fact you need the parent extended public key, is because you need the chain code (32 bytes) to do the math.
Its not a simple factor....

That's why remembered me a lot how profanity works
But is crucial to understand first how HD wallets works btw

This puzzle is very strange. If it's for measuring the world's brute forcing capacity, 161-256 are just a waste (RIPEMD160 entropy is filled by 160, and by all of P2PKH Bitcoin). The puzzle creator could improve the puzzle's utility without bringing in any extra funds from outside - just spend 161-256 across to the unsolved portion 51-160, and roughly treble the puzzle's content density.

If on the other hand there's a pattern to find... well... that's awfully open-ended... can we have a hint or two? Cheesy

I am the creator.

You are quite right, 161-256 are silly.  I honestly just did not think of this.  What is especially embarrassing, is this did not occur to me once, in two years.  By way of excuse, I was not really thinking much about the puzzle at all.

I will make up for two years of stupidity.  I will spend from 161-256 to the unsolved parts, as you suggest.  In addition, I intend to add further funds.  My aim is to boost the density by a factor of 10, from 0.001*length(key) to 0.01*length(key).  Probably in the next few weeks.  At any rate, when I next have an extended period of quiet and calm, to construct the new transaction carefully.

A few words about the puzzle.  There is no pattern.  It is just consecutive keys from a deterministic wallet (masked with leading 000...0001 to set difficulty).  It is simply a crude measuring instrument, of the cracking strength of the community.

Finally, I wish to express appreciation of the efforts of all developers of new cracking tools and technology.  The "large bitcoin collider" is especially innovative and interesting!


It's not a puzzle in the sense of the word puzzle. It is a
Quote
"It is just consecutive keys from a deterministic wallet (masked with leading 000...0001 to set difficulty)."
Since the function on the graph of Polynomial Regression of Log(2) behaves as linear, we can assume that the sequence generated by this function has one source.

P.S. If you don't know what I'm talking about, there's no point in opening a dispute.
nomachine
Member
**
Offline Offline

Activity: 476
Merit: 35


View Profile
May 12, 2024, 08:51:24 AM
Last edit: May 12, 2024, 09:15:36 AM by nomachine
 #5031

So.....here is a new toy.

puzzle 66 private key is from
65.00000000000000 to
65.99999999999999  Log(2)

Code:
import math
import sys
import secp256k1 as ice


# Function to convert Log(2) to decimal number
def log2_to_decimal(log2_value):
    return 2 ** log2_value

# Range of Log(2) values
start_log2 = 65.00000000000000
end_log2 = 65.99999999999999

# Number of decimal places for Log(2)
decimal_places = 15

target_caddr = "13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so"

# Iterate through the range and calculate decimal numbers
for i in range(int(start_log2 * 10**decimal_places), int((end_log2 + 10**-decimal_places) * 10**decimal_places)):
    log2_value = i / 10**decimal_places
    decimal_number = log2_to_decimal(log2_value)
    HEX = "%064x" % int(decimal_number)
    dec = int(HEX, 16)
    caddr = ice.privatekey_to_address(0, True, dec)
    message = "\r[+] {}".format(dec)
    messages = []
    messages.append(message)
    output = ''.join(messages) + "\r"
    sys.stdout.write(output)
    sys.stdout.flush()
    if caddr == target_caddr:
       wifc = ice.btc_pvk_to_wif(HEX)
       print(wifc)
       break

This  experimental log(2) method skips decimal numbers on the fly as desired in "decimal_places" . . .
Maybe someone can guess on luck what the "decimal_places" number is (from 1 to 17) .  Grin

bc1qdwnxr7s08xwelpjy3cc52rrxg63xsmagv50fa8
maylabel
Newbie
*
Offline Offline

Activity: 24
Merit: 0


View Profile
May 12, 2024, 09:58:52 AM
 #5032

The concept of a logarithm was invented just a few centuries ago and immediately changed engineering as we know it.

Code:
import math
from mpmath import mp

def calculate_log2(decimal_value):
    log2_value = mp.log(decimal_value, 2)
    return log2_value

def calculate_reverse_log2(log2_value):
    decimal_value = mp.power(2, log2_value)
    return decimal_value

target_numbers = [
    (1, 1), (2, 3), (3, 7), (4, 8), (5, 21), (6, 49), (7, 76), (8, 224), (9, 467), (10, 514),
    (11, 1155), (12, 2683), (13, 5216), (14, 10544), (15, 26867), (16, 51510),
    (17, 95823), (18, 198669), (19, 357535), (20, 863317), (21, 1811764),
    (22, 3007503), (23, 5598802), (24, 14428676), (25, 33185509),
    (26, 54538862), (27, 111949941), (28, 227634408), (29, 400708894),
    (30, 1033162084), (31, 2102388551), (32, 3093472814), (33, 7137437912),
    (34, 14133072157), (35, 20112871792), (36, 42387769980), (37, 100251560595),
    (38, 146971536592), (39, 323724968937), (40, 1003651412950),
    (41, 1458252205147), (42, 2895374552463), (43, 7409811047825),
    (44, 15404761757071), (45, 19996463086597), (46, 51408670348612),
    (47, 119666659114170), (48, 191206974700443), (49, 409118905032525),
    (50, 611140496167764), (51, 2058769515153876), (52, 4216495639600700),
    (53, 6763683971478124), (54, 9974455244496707), (55, 30045390491869460),
    (56, 44218742292676575), (57, 138245758910846492), (58, 199976667976342049),
    (59, 525070384258266191), (60, 1135041350219496382), (61, 1425787542618654982),
    (62, 3908372542507822062), (63, 8993229949524469768),
    (64, 17799667357578236628), (65, 30568377312064202855)
]

mp.dps = 20  # Set the high decimal precision

for ordinal, decimal_value in target_numbers:
    log2_result = calculate_log2(decimal_value)
    reverse_result = calculate_reverse_log2(log2_result)
    print(f"Puzzle:{ordinal}: Log(2) for {decimal_value} is approximately {log2_result}. Reverse calculation: {reverse_result}")

Look result of this madness:

Puzzle:1: Log(2) for 1 is approximately 0.0. Reverse calculation: 1.0
Puzzle:2: Log(2) for 3 is approximately 1.5849625007211561815. Reverse calculation: 3.0
Puzzle:3: Log(2) for 7 is approximately 2.8073549220576041074. Reverse calculation: 7.0
Puzzle:4: Log(2) for 8 is approximately 3.0. Reverse calculation: 8.0
Puzzle:5: Log(2) for 21 is approximately 4.3923174227787602889. Reverse calculation: 21.0
Puzzle:6: Log(2) for 49 is approximately 5.6147098441152082149. Reverse calculation: 49.0
Puzzle:7: Log(2) for 76 is approximately 6.2479275134435854938. Reverse calculation: 76.0
Puzzle:8: Log(2) for 224 is approximately 7.8073549220576041074. Reverse calculation: 224.0
Puzzle:9: Log(2) for 467 is approximately 8.8672787397096619133. Reverse calculation: 467.0
Puzzle:10: Log(2) for 514 is approximately 9.0056245491938781069. Reverse calculation: 514.0
Puzzle:11: Log(2) for 1155 is approximately 10.173677136303419893. Reverse calculation: 1155.0
Puzzle:12: Log(2) for 2683 is approximately 11.389631339260521112. Reverse calculation: 2683.0
Puzzle:13: Log(2) for 5216 is approximately 12.348728154231077553. Reverse calculation: 5216.0
Puzzle:14: Log(2) for 10544 is approximately 13.364134655008051742. Reverse calculation: 10544.0
Puzzle:15: Log(2) for 26867 is approximately 14.713547616912692731. Reverse calculation: 26867.0
Puzzle:16: Log(2) for 51510 is approximately 15.652564919610652675. Reverse calculation: 51510.0
Puzzle:17: Log(2) for 95823 is approximately 16.548084361224413154. Reverse calculation: 95823.0
Puzzle:18: Log(2) for 198669 is approximately 17.600007248708430135. Reverse calculation: 198669.0
Puzzle:19: Log(2) for 357535 is approximately 18.447724952285439321. Reverse calculation: 357535.0
Puzzle:20: Log(2) for 863317 is approximately 19.719530872026151871. Reverse calculation: 863317.00000000000001
Puzzle:21: Log(2) for 1811764 is approximately 20.788963611792287227. Reverse calculation: 1811764.0
Puzzle:22: Log(2) for 3007503 is approximately 21.520134745822105762. Reverse calculation: 3007503.0
Puzzle:23: Log(2) for 5598802 is approximately 22.416686729787820277. Reverse calculation: 5598802.0
Puzzle:24: Log(2) for 14428676 is approximately 23.782435585948494073. Reverse calculation: 14428676.0
Puzzle:25: Log(2) for 33185509 is approximately 24.984050066697330736. Reverse calculation: 33185509.0
Puzzle:26: Log(2) for 54538862 is approximately 25.700781261712878111. Reverse calculation: 54538862.0
Puzzle:27: Log(2) for 111949941 is approximately 26.738278526958637998. Reverse calculation: 111949941.0
Puzzle:28: Log(2) for 227634408 is approximately 27.762143403294801415. Reverse calculation: 227634408.0
Puzzle:29: Log(2) for 400708894 is approximately 28.577979290797464122. Reverse calculation: 400708894.0
Puzzle:30: Log(2) for 1033162084 is approximately 29.944419458082398243. Reverse calculation: 1033162084.0
Puzzle:31: Log(2) for 2102388551 is approximately 30.969382178280594153. Reverse calculation: 2102388551.0
Puzzle:32: Log(2) for 3093472814 is approximately 31.526580209327912218. Reverse calculation: 3093472814.0
Puzzle:33: Log(2) for 7137437912 is approximately 32.732759144627864676. Reverse calculation: 7137437912.0000000001
Puzzle:34: Log(2) for 14133072157 is approximately 33.718356052472843908. Reverse calculation: 14133072157.0
Puzzle:35: Log(2) for 20112871792 is approximately 34.22740003868583903. Reverse calculation: 20112871792.0
Puzzle:36: Log(2) for 42387769980 is approximately 35.302929017096708804. Reverse calculation: 42387769980.000000001
Puzzle:37: Log(2) for 100251560595 is approximately 36.544833738746849477. Reverse calculation: 100251560595.0
Puzzle:38: Log(2) for 146971536592 is approximately 37.096745824716051977. Reverse calculation: 146971536592.0
Puzzle:39: Log(2) for 323724968937 is approximately 38.235977688802476225. Reverse calculation: 323724968937.0
Puzzle:40: Log(2) for 1003651412950 is approximately 39.868395419757349213. Reverse calculation: 1003651412950.0
Puzzle:41: Log(2) for 1458252205147 is approximately 40.407377394423366271. Reverse calculation: 1458252205147.0
Puzzle:42: Log(2) for 2895374552463 is approximately 41.396887129359569265. Reverse calculation: 2895374552463.0
Puzzle:43: Log(2) for 7409811047825 is approximately 42.752573892536879788. Reverse calculation: 7409811047825.0
Puzzle:44: Log(2) for 15404761757071 is approximately 43.808441604030467369. Reverse calculation: 15404761757071.0
Puzzle:45: Log(2) for 19996463086597 is approximately 44.184810076602017917. Reverse calculation: 19996463086597.0
Puzzle:46: Log(2) for 51408670348612 is approximately 45.547076931749783679. Reverse calculation: 51408670348612.0
Puzzle:47: Log(2) for 119666659114170 is approximately 46.766014580697737785. Reverse calculation: 119666659114170.0
Puzzle:48: Log(2) for 191206974700443 is approximately 47.442128478217754077. Reverse calculation: 191206974700443.0
Puzzle:49: Log(2) for 409118905032525 is approximately 48.539513532885657356. Reverse calculation: 409118905032525.00001
Puzzle:50: Log(2) for 611140496167764 is approximately 49.118497410306637905. Reverse calculation: 611140496167764.0
Puzzle:51: Log(2) for 2058769515153876 is approximately 50.870703748687580964. Reverse calculation: 2058769515153876.0
Puzzle:52: Log(2) for 4216495639600700 is approximately 51.904965885818221825. Reverse calculation: 4216495639600700.0
Puzzle:53: Log(2) for 6763683971478124 is approximately 52.586730675690989872. Reverse calculation: 6763683971478124.0
Puzzle:54: Log(2) for 9974455244496707 is approximately 53.147159473916182081. Reverse calculation: 9974455244496706.9998
Puzzle:55: Log(2) for 30045390491869460 is approximately 54.737993190511333013. Reverse calculation: 30045390491869460.0
Puzzle:56: Log(2) for 44218742292676575 is approximately 55.295507509568065689. Reverse calculation: 44218742292676575.0
Puzzle:57: Log(2) for 138245758910846492 is approximately 56.940012835374135824. Reverse calculation: 138245758910846492.0
Puzzle:58: Log(2) for 199976667976342049 is approximately 57.472609298293031082. Reverse calculation: 199976667976342049.0
Puzzle:59: Log(2) for 525070384258266191 is approximately 58.865288438176815787. Reverse calculation: 525070384258266190.99
Puzzle:60: Log(2) for 1135041350219496382 is approximately 59.977450564669282481. Reverse calculation: 1135041350219496382.0
Puzzle:61: Log(2) for 1425787542618654982 is approximately 60.306464728992728608. Reverse calculation: 1425787542618654982.0
Puzzle:62: Log(2) for 3908372542507822062 is approximately 61.761273698209320329. Reverse calculation: 3908372542507822061.9
Puzzle:63: Log(2) for 8993229949524469768 is approximately 62.963545065677060031. Reverse calculation: 8993229949524469767.8
Puzzle:64: Log(2) for 17799667357578236628 is approximately 63.948484083037149251. Reverse calculation: 17799667357578236628.0
Puzzle:65: Log(2) for 30568377312064202855 is approximately 64.728673773273428832. Reverse calculation: 30568377312064202855.0

So, puzzle 66 private key is from
65.000000000000000000  log(2)
to
66.000000000000000000  log(2)


You can test puzzle 15 (or any) with this formula :

Code:
from mpmath import mp
import random
import secp256k1 as ice
import sys

def calculate_reverse_log2(log2_value):
    decimal_value = mp.power(2, log2_value)
    return decimal_value

mp.dps = 20  # Set the decimal precision to a sufficiently high value
target = "1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW"

while True:
    random_log2_value = mp.mpf(random.uniform(14.0, 15.0))
    reverse_result = calculate_reverse_log2(random_log2_value)
    HEX = "%064x" % int(reverse_result)
    dec = int(HEX, 16)
    caddr = ice.privatekey_to_address(0, True, dec)
    message = "[+] {}".format(dec);messages = [];messages.append(message);output = ''.join(messages) + "\r";sys.stdout.write(output);sys.stdout.flush()
    if target in caddr:
       wifc = ice.btc_pvk_to_wif(HEX)
       print(f"\n\033[32m[+] PUZZLE SOLVED: {wifc} \033[0m")
       break

Result is instant.

I can not see pattern here... Can you see ?? Grin

You can even do regression analysis
https://i.ibb.co/jJYVpd6/Figure-1.png

I'm lost between the size of the numbers and the precision required here . . .

There is no pattern. But it's not random either according to the polynomial analysis. There is an exact math formula for making this puzzle with some script, errors = ZERO.  With high decimal precision (mp.dps = 20 at least)
And the formula is in the creator's mind.

Your polynomial regression plot suggests that the source of this generation is the same.

OMG, sorry if their any scientist here, but this IS THE NATURE OF THE PUZZLE !!! Roll Eyes

It IS BUILDING on powers of 2 ranges of hex.
puzzle 65 - 2^64 to 2^65
puzzle 64 - 2^63 to 2^64
puzzle 63 - 2^62 to 2^63 and so on...

so its OBVIOUS will appear a power of 2 graph.
Now I invited you to the the standard deviation and realize the size of problem...

This is NOT what I pointed out...
The reality is: when you do a HD wallet with the child ( there are 213 childs from the original) is very hard to create on deterministic range of hex.
The fact you need the parent extended public key, is because you need the chain code (32 bytes) to do the math.
Its not a simple factor....

That's why remembered me a lot how profanity works
But is crucial to understand first how HD wallets works btw

This puzzle is very strange. If it's for measuring the world's brute forcing capacity, 161-256 are just a waste (RIPEMD160 entropy is filled by 160, and by all of P2PKH Bitcoin). The puzzle creator could improve the puzzle's utility without bringing in any extra funds from outside - just spend 161-256 across to the unsolved portion 51-160, and roughly treble the puzzle's content density.

If on the other hand there's a pattern to find... well... that's awfully open-ended... can we have a hint or two? Cheesy

I am the creator.

You are quite right, 161-256 are silly.  I honestly just did not think of this.  What is especially embarrassing, is this did not occur to me once, in two years.  By way of excuse, I was not really thinking much about the puzzle at all.

I will make up for two years of stupidity.  I will spend from 161-256 to the unsolved parts, as you suggest.  In addition, I intend to add further funds.  My aim is to boost the density by a factor of 10, from 0.001*length(key) to 0.01*length(key).  Probably in the next few weeks.  At any rate, when I next have an extended period of quiet and calm, to construct the new transaction carefully.

A few words about the puzzle.  There is no pattern.  It is just consecutive keys from a deterministic wallet (masked with leading 000...0001 to set difficulty).  It is simply a crude measuring instrument, of the cracking strength of the community.

Finally, I wish to express appreciation of the efforts of all developers of new cracking tools and technology.  The "large bitcoin collider" is especially innovative and interesting!


It's not a puzzle in the sense of the word puzzle. It is a
Quote
"It is just consecutive keys from a deterministic wallet (masked with leading 000...0001 to set difficulty)."
Since the function on the graph of Polynomial Regression of Log(2) behaves as linear, we can assume that the sequence generated by this function has one source.

P.S. If you don't know what I'm talking about, there's no point in opening a dispute.


Just prove my point further:
its a hd wallet construction method... so understand how they are made is more important than brutal force.

The point I disagree is:

Quote
Since the function on the graph of Polynomial Regression of Log(2) behaves as linear, we can assume that the sequence generated by this function has one source.

P.S. If you don't know what I'm talking about, there's no point in opening a dispute.


Its not that cut and dry when you deal with large number....
The precision and the statistical analysis goes to hell with such huge numbers.
The error can contain quadrillion upon quadrillions, sometime even bigger than the range the creator determinate.
Without saying the floating numbers, statistical precision and significance and the list goes on and on....

Moreover, have you tried to create a hd can fulfill the requirements the creator have?
I'm trying to code that and I cant find a way because by the math you derivative the child wallet deterministic from the parent.
I can't find any way to add the rule backward (child structure to parent key)
I have zero idea how to do it  Huh.... even chatgpt and mistral said is impossible ( i have questions about it  Roll Eyes , take as a grain of salt)

And no, a potato pc can't do all this smiths... I'm saying because I have a simple potato laptop and god knows how bad is going
kTimesG
Member
**
Online Online

Activity: 259
Merit: 39


View Profile
May 12, 2024, 11:39:45 AM
Last edit: May 12, 2024, 11:50:50 AM by kTimesG
 #5033

If I would be the creator I would laugh so hard about some of the things discussed here.

Guys, a logarithm is an abstract concept, not some math function.

You get a thing called a "base change". In this case we're dealing with a change of base of an element from some position in a finite field (private keys) to an element in the same position in a finite group (EC public keys) and the problem is to solve for the position without a way to go back from the latter to the first (which is assumed to be hard, but not yet proven). And this in the best case that we even have such an element, and not some fingerprint of it (an address), which makes the problem levels of more absurdly difficult. WTF is with the real numbers field log2 discussion, it makes no sense, we already know the ranges double in size at each step, of course any polynomial regression or whatever is a straight line. Dividing 1 by (2**64) is four levels of magnitude below a double-precision IEEE floating point, so what errors do you expect, they will always be after the 64-th zero decimal digit in reality. Nevermind the fact that there's an infinity of real numbers between any two real numbers, so an infinity of computations. Take 7 as a private key and try to solve back from [1/4, 1/8) interval, mission impossible.

This is not an analytical problem, it's a group theory problem.
nomachine
Member
**
Offline Offline

Activity: 476
Merit: 35


View Profile
May 12, 2024, 12:32:33 PM
 #5034


I can't find any way to add the rule backward (child structure to parent key)
I have zero idea how to do it  Huh.... even chatgpt and mistral said is impossible ( i have questions about it  Roll Eyes , take as a grain of salt)

And no, a potato pc can't do all this smiths... I'm saying because I have a simple potato laptop and god knows how bad is going

The result will always be the same, whether you use the range as a decimal number and generate random numbers there, or whether you use log(2) as a different notation. You could also chase the numbers through other algorithms. Some will work faster and that is the only advantage.

bc1qdwnxr7s08xwelpjy3cc52rrxg63xsmagv50fa8
maylabel
Newbie
*
Offline Offline

Activity: 24
Merit: 0


View Profile
May 12, 2024, 12:36:48 PM
 #5035

If I would be the creator I would laugh so hard about some of the things discussed here.

Guys, a logarithm is an abstract concept, not some math function.

You get a thing called a "base change". In this case we're dealing with a change of base of an element from some position in a finite field (private keys) to an element in the same position in a finite group (EC public keys) and the problem is to solve for the position without a way to go back from the latter to the first (which is assumed to be hard, but not yet proven). And this in the best case that we even have such an element, and not some fingerprint of it (an address), which makes the problem levels of more absurdly difficult. WTF is with the real numbers field log2 discussion, it makes no sense, we already know the ranges double in size at each step, of course any polynomial regression or whatever is a straight line. Dividing 1 by (2**64) is four levels of magnitude below a double-precision IEEE floating point, so what errors do you expect, they will always be after the 64-th zero decimal digit in reality. Nevermind the fact that there's an infinity of real numbers between any two real numbers, so an infinity of computations. Take 7 as a private key and try to solve back from [1/4, 1/8) interval, mission impossible.

This is not an analytical problem, it's a group theory problem.

Funnier than that is the circles of apocalypse  Grin Grin Grin

I agree with you. It's so many problems, I will humongous lists if I start go in depth.
My idea is to see if the pseudo-randomicity of the numbers gave some clues, like I did as a work 10 years ago.
Its the only route I'm thinking tbh bc I have a old laptop and find a job is horrible rn.
But even than that, my jupyter is killing my patience and floating number problem is a REAL pain in the a**.

as a side note: I was also telling my date I was reviewing GF(n) to solve a puzzle and I confronted a quite skeptical reaction like "you are not a procrastinator person to do this as a hobby".... oh well  Grin Grin Grin
nomachine
Member
**
Offline Offline

Activity: 476
Merit: 35


View Profile
May 12, 2024, 12:47:35 PM
 #5036


My idea is to see if the pseudo-randomicity of the numbers gave some clues, like I did as a work 10 years ago.


@zahid888 already tried that and I did the same.  You can't imagine what we all tried.
I even went back to 2015 and created seeds.  Grin


   seed_value = 946665180 #(use this seed you will get the same pvk as below)
    random.seed(seed_value)
    seed = str(seed_value)
    aa = random.randrange(2**255,2**256)
    key = Key.from_int(aa)
    addr256 = key.address
    hex256 = "%00x" % aa
    a = random.randrange(2**65,2**66)
    key = Key.from_int(a)
    addr66 = key.address
    hex66 = "%00x" % a
    b = random.randrange(2**66,2**67)
    key = Key.from_int(b)
    addr67 = key.address
    hex67 = "%00x" % b

Address 1 : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH | Private Key : 1
Address 2 : 1CUNEBjYrCn2y1SdiUMohaKUi4wpP326Lb | Private Key : 3
Address 3 : 19ZewH8Kk1PDbSNdJ97FP4EiCjTRaZMZQA | Private Key : 7
Address 4 : 1EhqbyUMvvs7BfL8goY6qcPbD6YKfPqb7e | Private Key : 8
Address 5 : 1E6NuFjCi27W5zoXg8TRdcSRq84zJeBW3k | Private Key : 15
Address 6 : 1PitScNLyp2HCygzadCh7FveTnfmpPbfp8 | Private Key : 31
Address 7 : 1McVt1vMtCC7yn5b9wgX1833yCcLXzueeC | Private Key : 4c
Address 8 : 1M92tSqNmQLYw33fuBvjmeadirh1ysMBxK | Private Key : e0
Address 9 : 1CQFwcjw1dwhtkVWBttNLDtqL7ivBonGPV | Private Key : 1d3
Address 10 : 1LeBZP5QCwwgXRtmVUvTVrraqPUokyLHqe | Private Key : 202
Address 11 : 1PgQVLmst3Z314JrQn5TNiys8Hc38TcXJu | Private Key : 483
Address 12 : 1DBaumZxUkM4qMQRt2LVWyFJq5kDtSZQot | Private Key : a7b
Address 13 : 1Pie8JkxBT6MGPz9Nvi3fsPkr2D8q3GBc1 | Private Key : 1460
Address 14 : 1ErZWg5cFCe4Vw5BzgfzB74VNLaXEiEkhk | Private Key : 2930
Address 15 : 1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW | Private Key : 68f3
Address 16 : 1BDyrQ6WoF8VN3g9SAS1iKZcPzFfnDVieY | Private Key : c936
Address 17 : 1HduPEXZRdG26SUT5Yk83mLkPyjnZuJ7Bm | Private Key : 1764f
Address 18 : 1GnNTmTVLZiqQfLbAdp9DVdicEnB5GoERE | Private Key : 3080d
Address 19 : 1NWmZRpHH4XSPwsW6dsS3nrNWfL1yrJj4w | Private Key : 5749f
Address 20 : 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum | Private Key : d2c55
Address 21 : 14oFNXucftsHiUMY8uctg6N487riuyXs4h | Private Key : 1ba534
Address 22 : 1CfZWK1QTQE3eS9qn61dQjV89KDjZzfNcv | Private Key : 2de40f
Address 23 : 1L2GM8eE7mJWLdo3HZS6su1832NX2txaac | Private Key : 556e52
Address 24 : 1rSnXMr63jdCuegJFuidJqWxUPV7AtUf7 | Private Key : dc2a04
Address 25 : 15JhYXn6Mx3oF4Y7PcTAv2wVVAuCFFQNiP | Private Key : 1fa5ee5
Address 26 : 1JVnST957hGztonaWK6FougdtjxzHzRMMg | Private Key : 340326e
Address 27 : 128z5d7nN7PkCuX5qoA4Ys6pmxUYnEy86k | Private Key : 6ac3875
Address 28 : 12jbtzBb54r97TCwW3G1gCFoumpckRAPdY | Private Key : d916ce8
Address 29 : 19EEC52krRUK1RkUAEZmQdjTyHT7Gp1TYT | Private Key : 17e2551e
Address 30 : 1LHtnpd8nU5VHEMkG2TMYYNUjjLc992bps | Private Key : 3d94cd64
Address 31 : 1LhE6sCTuGae42Axu1L1ZB7L96yi9irEBE | Private Key : 7d4fe747
Address 32 : 1FRoHA9xewq7DjrZ1psWJVeTer8gHRqEvR | Private Key : b862a62e
Address 33 : 187swFMjz1G54ycVU56B7jZFHFTNVQFDiu | Private Key : 1a96ca8d8
Address 34 : 1PWABE7oUahG2AFFQhhvViQovnCr4rEv7Q | Private Key : 34a65911d
Address 35 : 1PWCx5fovoEaoBowAvF5k91m2Xat9bMgwb | Private Key : 4aed21170
Address 36 : 1Be2UF9NLfyLFbtm3TCbmuocc9N1Kduci1 | Private Key : 9de820a7c
Address 37 : 14iXhn8bGajVWegZHJ18vJLHhntcpL4dex | Private Key : 1757756a93
Address 38 : 1HBtApAFA9B2YZw3G2YKSMCtb3dVnjuNe2 | Private Key : 22382facd0
Address 39 : 122AJhKLEfkFBaGAd84pLp1kfE7xK3GdT8 | Private Key : 4b5f8303e9
Address 40 : 1EeAxcprB2PpCnr34VfZdFrkUWuxyiNEFv | Private Key : e9ae4933d6
Address 41 : 1L5sU9qvJeuwQUdt4y1eiLmquFxKjtHr3E | Private Key : 153869acc5b
Address 42 : 1E32GPWgDyeyQac4aJxm9HVoLrrEYPnM4N | Private Key : 2a221c58d8f
Address 43 : 1PiFuqGpG8yGM5v6rNHWS3TjsG6awgEGA1 | Private Key : 6bd3b27c591
Address 44 : 1CkR2uS7LmFwc3T2jV8C1BhWb5mQaoxedF | Private Key : e02b35a358f
Address 45 : 1NtiLNGegHWE3Mp9g2JPkgx6wUg4TW7bbk | Private Key : 122fca143c05
Address 46 : 1F3JRMWudBaj48EhwcHDdpeuy2jwACNxjP | Private Key : 2ec18388d544
Address 47 : 1Pd8VvT49sHKsmqrQiP61RsVwmXCZ6ay7Z | Private Key : 6cd610b53cba
Address 48 : 1DFYhaB2J9q1LLZJWKTnscPWos9VBqDHzv | Private Key : ade6d7ce3b9b
Address 49 : 12CiUhYVTTH33w3SPUBqcpMoqnApAV4WCF | Private Key : 174176b015f4d
Address 50 : 1MEzite4ReNuWaL5Ds17ePKt2dCxWEofwk | Private Key : 22bd43c2e9354
Address 51 : 1NpnQyZ7x24ud82b7WiRNvPm6N8bqGQnaS | Private Key : 75070a1a009d4
Address 52 : 15z9c9sVpu6fwNiK7dMAFgMYSK4GqsGZim | Private Key : efae164cb9e3c
Address 53 : 15K1YKJMiJ4fpesTVUcByoz334rHmknxmT | Private Key : 180788e47e326c
Address 54 : 1KYUv7nSvXx4642TKeuC2SNdTk326uUpFy | Private Key : 236fb6d5ad1f43
Address 55 : 1LzhS3k3e9Ub8i2W1V8xQFdB8n2MYCHPCa | Private Key : 6abe1f9b67e114
Address 56 : 17aPYR1m6pVAacXg1PTDDU7XafvK1dxvhi | Private Key : 9d18b63ac4ffdf
Address 57 : 15c9mPGLku1HuW9LRtBf4jcHVpBUt8txKz | Private Key : 1eb25c90795d61c
Address 58 : 1Dn8NF8qDyyfHMktmuoQLGyjWmZXgvosXf | Private Key : 2c675b852189a21
Address 59 : 1HAX2n9Uruu9YDt4cqRgYcvtGvZj1rbUyt | Private Key : 7496cbb87cab44f
Address 60 : 1Kn5h2qpgw9mWE5jKpk8PP4qvvJ1QVy8su | Private Key : fc07a1825367bbe
Address 61 : 1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB | Private Key : 13c96a3742f64906
Address 62 : 1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi | Private Key : 363d541eb611abee
Address 63 : 1NpYjtLira16LfGbGwZJ5JbDPh3ai9bjf4 | Private Key : 7cce5efdaccf6808
Address 64 : 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN | Private Key : f7051f27b09112d4
Address 65 : 18ZMbwUFLMHoZBbfpCjUJQTCMCbktshgpe | Private Key : 1a838b13505b26867
Address 66 : 13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so | Private Key : 387c50c59d006cb6c
Address 67 : 1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9 | Private Key : 592a47c5ab1061e43
Address 68 : 1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ | Private Key : fda8f781ccd4ff6ae
Address 69 : 19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG | Private Key : 1254ea927aa155e362
Address 70 : 19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR | Private Key : 349b84b6431a6c4ef1
Address 71 : 1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU | Private Key : 4549883a4b8e41ee27
Address 72 : 1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR | Private Key : 96e9ffb86f063ac90f
Address 73 : 12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4 | Private Key : 1fe3269c8497d2a3558
Address 74 : 1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv | Private Key : 32b341493caffcfdced
Address 75 : 1J36UjUByGroXcCvmj13U6uwaVv9caEeAt | Private Key : 4c5ce114686a1336e07
Address 76 : 1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF | Private Key : e0ec4c57a9730ba3456
Address 77 : 1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE | Private Key : 1a89227bbf7abc81eca1
Address 78 : 15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb | Private Key : 3a628a0f437029402a4b
Address 79 : 1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8 | Private Key : 51524a91846f364c07e9
Address 80 : 1BCf6rHUW6m3iH2ptsvnjgLruAiPQQepLe | Private Key : ea1a5c66dcc11b5ad180
Address 81 : 15qsCm78whspNQFydGJQk5rexzxTQopnHZ | Private Key : 1d6999b30325155a69c16
Address 82 : 13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC | Private Key : 21b79322fc2d647c23779
Address 83 : 14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2 | Private Key : 61a4a05e63b568e7c0e1d
Address 84 : 1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D | Private Key : d928eef05dac219dd9b75
Address 85 : 1Kh22PvXERd2xpTQk3ur6pPEqFeckCJfAr | Private Key : 11720c4f018d51b8cebba8
Address 86 : 1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK | Private Key : 351b269e4ae6c33ac26e9a
Address 87 : 1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq | Private Key : 6b1f244fd690dc02078a45
Address 88 : 16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf | Private Key : d04e8cc3d0ebf4aa556561
Address 89 : 19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt | Private Key : 1b075a589d9b373dbee1584
Address 90 : 1L12FHH2FHjvTviyanuiFVfmzCy46RRATU | Private Key : 2ce00bb2136a445c71e85bf
Address 91 : 1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74 | Private Key : 467de4d9a8dfb892e24c5e3
Address 92 : 1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5 | Private Key : a8e38ba8d5c519d249a91f4
Address 93 : 17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad | Private Key : 111fa8ca379d43d0a7011357
Address 94 : 1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL | Private Key : 2e162610a9519b0fb3f21e62
Address 95 : 19eVSDuizydXxhohGh8Ki9WY9KsHdSwoQC | Private Key : 527a792b183c7f64a0e8b1f4
Address 96 : 15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b | Private Key : 9ff2c3e21420cbd06598e94e
Address 97 : 18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8 | Private Key : 1a329279f0f598d0c2f6221a6
Address 98 : 1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX | Private Key : 2ade793d9d8e8d2af68ff2a46
Address 99 : 1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL | Private Key : 557d0d384f0d74310bac1c97e
Address 100 : 1KCgMv8fo2TPBpddVi9jqmMmcne9uSNJ5F | Private Key : af55fc59c335c8ec67ed24826
Address 101 : 1CKCVdbDJasYmhswB6HKZHEAnNaDpK7W4n | Private Key : 10943bb3468629859af2be1c11
Address 102 : 1PXv28YxmYMaB8zxrKeZBW8dt2HK7RkRPX | Private Key : 210f601b8c4b6ed2d15ebb708c
Address 103 : 1AcAmB6jmtU6AiEcXkmiNE9TNVPsj9DULf | Private Key : 5b32c65863f1261c4f6d5d41f0
Address 104 : 1EQJvpsmhazYCcKX5Au6AZmZKRnzarMVZu | Private Key : 9b5f22dec48d499b7e71baeac4
Address 105 : 1CMjscKB3QW7SDyQ4c3C3DEUHiHRhiZVib | Private Key : 16f14fc2054cd87ee6396b33df3
Address 106 : 18KsfuHuzQaBTNLASyj15hy4LuqPUo1FNB | Private Key : 3bee2c1d9b268e0e0239864a8a9
Address 107 : 15EJFC5ZTs9nhsdvSUeBXjLAuYq3SWaxTc | Private Key : 7a402bac7f2cf31e67128c8c96a
Address 108 : 1HB1iKUqeffnVsvQsbpC6dNi1XKbyNuqao | Private Key : 9e8155c01771f37972f0785ffd2
Address 109 : 1GvgAXVCbA8FBjXfWiAms4ytFeJcKsoyhL | Private Key : 166e1a3bda0c24e1411ea76b46af
Address 110 : 12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg | Private Key : 35c0d7234df7deb0f20cf7062444
Address 111 : 1824ZJQ7nKJ9QFTRBqn7z7dHV5EGpzUpH3 | Private Key : 50216035bc5af18f93f26dd3ad43
Address 112 : 18A7NA9FTsnJxWgkoFfPAFbQzuQxpRtCos | Private Key : cc7ca57aa8c63ddfd21b99c9f7bd
Address 113 : 1NeGn21dUDDeqFQ63xb2SpgUuXuBLA4WT4 | Private Key : 1968e5658c446ffdac9fc7f5f1877
Address 114 : 174SNxfqpdMGYy5YQcfLbSTK3MRNZEePoy | Private Key : 28a19351507823b49ccf9482d14fd
Address 115 : 1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv | Private Key : 60f4d11574f5deee49961d9609ac6
Address 116 : 1MnJ6hdhvK37VLmqcdEwqC3iFxyWH2PHUV | Private Key : d68c67b6ba39d8e9f021e0cfb0024
Address 117 : 1KNRfGWw7Q9Rmwsc6NT5zsdvEb9M2Wkj5Z | Private Key : 1403a281b838ab018d995f34535e69
Address 118 : 1PJZPzvGX19a7twf5HyD2VvNiPdHLzm9F6 | Private Key : 3ea8878a4895c67b9663508054f9d2
Address 119 : 1GuBBhf61rnvRe4K8zu8vdQB3kHzwFqSy7 | Private Key : 55bea8b24225cb4deb8e60778e56e4
Address 120 : 17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT | Private Key : 9c6d18023ecc489fbe834d9e4c77be
Address 121 : 1GDSuiThEV64c166LUFC9uDcVdGjqkxKyh | Private Key : 1afbc9330c6d24c216c2c724afe3041
Address 122 : 1Me3ASYt5JCTAK2XaC32RMeH34PdprrfDx | Private Key : 3b4a6a58a386e8f8af95b37a731cf0e
Address 123 : 1CdufMQL892A69KXgv6UNBD17ywWqYpKut | Private Key : 7a81240304f073409c7c83ed835a315
Address 124 : 1BkkGsX9ZM6iwL3zbqs7HWBV7SvosR6m8N | Private Key : d6ab2da3c82a77af1751b5345779f01
Address 125 : 1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5 | Private Key : 10e8b9b8178295319cc4f0c6b59c593a
Address 126 : 1AWCLZAjKbV1P7AHvaPNCKiB7ZWVDMxFiz | Private Key : 3334725acd4d98307a93cdac0f1bdcd1
Address 127 : 1G6EFyBRU86sThN3SSt3GrHu1sA7w7nzi4 | Private Key : 43d877dd04ec427bc79c23d83e3eb96b
Address 128 : 1MZ2L1gFrCtkkn6DnTT2e4PFUTHw9gNwaj | Private Key : a7b1f24732e21cdd77bfb1a242c3322a
Address 129 : 1Hz3uv3nNZzBVMXLGadCucgjiCs5W9vaGz | Private Key : 14ef6f7157739304a430913fcf6e5271a
Address 130 : 1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua | Private Key : 33a6cf5dbaf6e47b2d0c093c16adf1b96
Address 131 : 16zRPnT8znwq42q7XeMkZUhb1bKqgRogyy | Private Key : 6b8c15626827c392ab0f5d6f72603d0f8
Address 132 : 1KrU4dHE5WrW8rhWDsTRjR21r8t3dsrS3R | Private Key : ef7fe2606a4143dad471531c53772442c
Address 133 : 17uDfp5r4n441xkgLFmhNoSW1KWp6xVLD | Private Key : 15f76157508d9779fc8e238e1c247142d7
Address 134 : 13A3JrvXmvg5w9XGvyyR4JEJqiLz8ZySY3 | Private Key : 22a188673b96b20e974a76fd1491e46866
Address 135 : 16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v | Private Key : 69bca5a75a461a887acb92fa817109ea60
Address 136 : 1UDHPdovvR985NrWSkdWQDEQ1xuRiTALq | Private Key : ebf06065edf1bfef22eb1ceb1445ea2940
Address 137 : 15nf31J46iLuK1ZkTnqHo7WgN5cARFK3RA | Private Key : 1030d7cbbde282b3963e0867b46477f1a7d
Address 138 : 1Ab4vzG6wEQBDNQM1B2bvUz4fqXXdFk2WT | Private Key : 2a436e594a1920216b6ff44c364c40658ef
Address 139 : 1Fz63c775VV9fNyj25d9Xfw3YHE6sKCxbt | Private Key : 70f361f75fafddd6de4e9553649f1cef19e
Address 140 : 1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo | Private Key : d926936f1916b648b87bc6848ff00427df7
Address 141 : 1CD91Vm97mLQvXhrnoMChhJx4TP9MaQkJo | Private Key : 1b7a40209d5455e7eb68b32b08ca26339231
Address 142 : 15MnK2jXPqTMURX4xC3h4mAZxyCcaWWEDD | Private Key : 31f79cab2773d5a3b645be903ca3b2b23e95
Address 143 : 13N66gCzWWHEZBxhVxG18P8wyjEWF9Yoi1 | Private Key : 687f4cadbc80e2c78dda03a6058bbf8dbe20
Address 144 : 1NevxKDYuDcCh1ZMMi6ftmWwGrZKC6j7Ux | Private Key : b81a70baf88bdaf1317291647da3b55e0cfd
Address 145 : 19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg | Private Key : 1098ff29646926325b1bac056edadf8829c8c
Address 146 : 1M7ipcdYHey2Y5RZM34MBbpugghmjaV89P | Private Key : 3921b30212882e51870788c74bbede2b2cf2f
Address 147 : 18aNhurEAJsw6BAgtANpexk5ob1aGTwSeL | Private Key : 76e7f2a4d2e68993021313746c8ab4e757961
Address 148 : 1FwZXt6EpRT7Fkndzv6K4b4DFoT4trbMrV | Private Key : fa8e7dddfd0b95ec5c29f3a3272cdfbdbe19d
Address 149 : 1CXvTzR6qv8wJ7eprzUKeWxyGcHwDYP1i2 | Private Key : 1fe964248beacee112de2f98f3ef5fd3b2f9a4
Address 150 : 1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy | Private Key : 2244ac925edc90e3689ce1dec59a936a8aebb0
Address 151 : 13Q84TNNvgcL3HJiqQPvyBb9m4hxjS3jkV | Private Key : 5a4489ed3c6c4db505137e42e54fff6c3fb43f
Address 152 : 1LuUHyrQr8PKSvbcY1v1PiuGuqFjWpDumN | Private Key : a18cf844e23a302151bb419e120c22d83673c3
Address 153 : 18192XpzzdDi2K11QVHR7td2HcPS6Qs5vg | Private Key : 1c6aa58e6b25bbcbf933a63b0e383c3915b5558
Address 154 : 1NgVmsCCJaKLzGyKLFJfVequnFW9ZvnMLN | Private Key : 3efa3bddcf768c78e3baeacbc22213f2ae255b4
Address 155 : 1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ | Private Key : 4ee6da4952d54368fe767f4ee7d302a9fbf7133
Address 156 : 1FTpAbQa4h8trvhQXjXnmNhqdiGBd1oraE | Private Key : aa2c3f950f806de831775eb53b3e3797279a5cf
Address 157 : 14JHoRAdmJg3XR4RjMDh6Wed6ft6hzbQe9 | Private Key : 12e434ad3465e69c3ccd3dd1c1e2ff461066396c
Address 158 : 19z6waranEf8CcP8FqNgdwUe1QRxvUNKBG | Private Key : 239856ce86999133eb532fa6650076bf4ca343bf
Address 159 : 14u4nA5sugaswb6SZgn5av2vuChdMnD9E5 | Private Key : 4b3dcbbbe1dc5b7529e118c00da635e33ae2ae8b
Address 160 : 1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv | Private Key : 87da417e72fef42b438bb6516cb259fb3ed015c7


bc1qdwnxr7s08xwelpjy3cc52rrxg63xsmagv50fa8
maylabel
Newbie
*
Offline Offline

Activity: 24
Merit: 0


View Profile
May 12, 2024, 01:07:11 PM
 #5037


My idea is to see if the pseudo-randomicity of the numbers gave some clues, like I did as a work 10 years ago.


@zahid888 already tried that and I did the same.  You can't imagine what we all tried.
I even went back to 2015 and created seeds.  Grin


   seed_value = 946665180 #(use this seed you will get the same pvk as below)
    random.seed(seed_value)
    seed = str(seed_value)
    aa = random.randrange(2**255,2**256)
    key = Key.from_int(aa)
    addr256 = key.address
    hex256 = "%00x" % aa
    a = random.randrange(2**65,2**66)
    key = Key.from_int(a)
    addr66 = key.address
    hex66 = "%00x" % a
    b = random.randrange(2**66,2**67)
    key = Key.from_int(b)
    addr67 = key.address
    hex67 = "%00x" % b

Address 1 : 1BgGZ9tcN4rm9KBzDn7KprQz87SZ26SAMH | Private Key : 1
Address 2 : 1CUNEBjYrCn2y1SdiUMohaKUi4wpP326Lb | Private Key : 3
Address 3 : 19ZewH8Kk1PDbSNdJ97FP4EiCjTRaZMZQA | Private Key : 7
Address 4 : 1EhqbyUMvvs7BfL8goY6qcPbD6YKfPqb7e | Private Key : 8
Address 5 : 1E6NuFjCi27W5zoXg8TRdcSRq84zJeBW3k | Private Key : 15
Address 6 : 1PitScNLyp2HCygzadCh7FveTnfmpPbfp8 | Private Key : 31
Address 7 : 1McVt1vMtCC7yn5b9wgX1833yCcLXzueeC | Private Key : 4c
Address 8 : 1M92tSqNmQLYw33fuBvjmeadirh1ysMBxK | Private Key : e0
Address 9 : 1CQFwcjw1dwhtkVWBttNLDtqL7ivBonGPV | Private Key : 1d3
Address 10 : 1LeBZP5QCwwgXRtmVUvTVrraqPUokyLHqe | Private Key : 202
Address 11 : 1PgQVLmst3Z314JrQn5TNiys8Hc38TcXJu | Private Key : 483
Address 12 : 1DBaumZxUkM4qMQRt2LVWyFJq5kDtSZQot | Private Key : a7b
Address 13 : 1Pie8JkxBT6MGPz9Nvi3fsPkr2D8q3GBc1 | Private Key : 1460
Address 14 : 1ErZWg5cFCe4Vw5BzgfzB74VNLaXEiEkhk | Private Key : 2930
Address 15 : 1QCbW9HWnwQWiQqVo5exhAnmfqKRrCRsvW | Private Key : 68f3
Address 16 : 1BDyrQ6WoF8VN3g9SAS1iKZcPzFfnDVieY | Private Key : c936
Address 17 : 1HduPEXZRdG26SUT5Yk83mLkPyjnZuJ7Bm | Private Key : 1764f
Address 18 : 1GnNTmTVLZiqQfLbAdp9DVdicEnB5GoERE | Private Key : 3080d
Address 19 : 1NWmZRpHH4XSPwsW6dsS3nrNWfL1yrJj4w | Private Key : 5749f
Address 20 : 1HsMJxNiV7TLxmoF6uJNkydxPFDog4NQum | Private Key : d2c55
Address 21 : 14oFNXucftsHiUMY8uctg6N487riuyXs4h | Private Key : 1ba534
Address 22 : 1CfZWK1QTQE3eS9qn61dQjV89KDjZzfNcv | Private Key : 2de40f
Address 23 : 1L2GM8eE7mJWLdo3HZS6su1832NX2txaac | Private Key : 556e52
Address 24 : 1rSnXMr63jdCuegJFuidJqWxUPV7AtUf7 | Private Key : dc2a04
Address 25 : 15JhYXn6Mx3oF4Y7PcTAv2wVVAuCFFQNiP | Private Key : 1fa5ee5
Address 26 : 1JVnST957hGztonaWK6FougdtjxzHzRMMg | Private Key : 340326e
Address 27 : 128z5d7nN7PkCuX5qoA4Ys6pmxUYnEy86k | Private Key : 6ac3875
Address 28 : 12jbtzBb54r97TCwW3G1gCFoumpckRAPdY | Private Key : d916ce8
Address 29 : 19EEC52krRUK1RkUAEZmQdjTyHT7Gp1TYT | Private Key : 17e2551e
Address 30 : 1LHtnpd8nU5VHEMkG2TMYYNUjjLc992bps | Private Key : 3d94cd64
Address 31 : 1LhE6sCTuGae42Axu1L1ZB7L96yi9irEBE | Private Key : 7d4fe747
Address 32 : 1FRoHA9xewq7DjrZ1psWJVeTer8gHRqEvR | Private Key : b862a62e
Address 33 : 187swFMjz1G54ycVU56B7jZFHFTNVQFDiu | Private Key : 1a96ca8d8
Address 34 : 1PWABE7oUahG2AFFQhhvViQovnCr4rEv7Q | Private Key : 34a65911d
Address 35 : 1PWCx5fovoEaoBowAvF5k91m2Xat9bMgwb | Private Key : 4aed21170
Address 36 : 1Be2UF9NLfyLFbtm3TCbmuocc9N1Kduci1 | Private Key : 9de820a7c
Address 37 : 14iXhn8bGajVWegZHJ18vJLHhntcpL4dex | Private Key : 1757756a93
Address 38 : 1HBtApAFA9B2YZw3G2YKSMCtb3dVnjuNe2 | Private Key : 22382facd0
Address 39 : 122AJhKLEfkFBaGAd84pLp1kfE7xK3GdT8 | Private Key : 4b5f8303e9
Address 40 : 1EeAxcprB2PpCnr34VfZdFrkUWuxyiNEFv | Private Key : e9ae4933d6
Address 41 : 1L5sU9qvJeuwQUdt4y1eiLmquFxKjtHr3E | Private Key : 153869acc5b
Address 42 : 1E32GPWgDyeyQac4aJxm9HVoLrrEYPnM4N | Private Key : 2a221c58d8f
Address 43 : 1PiFuqGpG8yGM5v6rNHWS3TjsG6awgEGA1 | Private Key : 6bd3b27c591
Address 44 : 1CkR2uS7LmFwc3T2jV8C1BhWb5mQaoxedF | Private Key : e02b35a358f
Address 45 : 1NtiLNGegHWE3Mp9g2JPkgx6wUg4TW7bbk | Private Key : 122fca143c05
Address 46 : 1F3JRMWudBaj48EhwcHDdpeuy2jwACNxjP | Private Key : 2ec18388d544
Address 47 : 1Pd8VvT49sHKsmqrQiP61RsVwmXCZ6ay7Z | Private Key : 6cd610b53cba
Address 48 : 1DFYhaB2J9q1LLZJWKTnscPWos9VBqDHzv | Private Key : ade6d7ce3b9b
Address 49 : 12CiUhYVTTH33w3SPUBqcpMoqnApAV4WCF | Private Key : 174176b015f4d
Address 50 : 1MEzite4ReNuWaL5Ds17ePKt2dCxWEofwk | Private Key : 22bd43c2e9354
Address 51 : 1NpnQyZ7x24ud82b7WiRNvPm6N8bqGQnaS | Private Key : 75070a1a009d4
Address 52 : 15z9c9sVpu6fwNiK7dMAFgMYSK4GqsGZim | Private Key : efae164cb9e3c
Address 53 : 15K1YKJMiJ4fpesTVUcByoz334rHmknxmT | Private Key : 180788e47e326c
Address 54 : 1KYUv7nSvXx4642TKeuC2SNdTk326uUpFy | Private Key : 236fb6d5ad1f43
Address 55 : 1LzhS3k3e9Ub8i2W1V8xQFdB8n2MYCHPCa | Private Key : 6abe1f9b67e114
Address 56 : 17aPYR1m6pVAacXg1PTDDU7XafvK1dxvhi | Private Key : 9d18b63ac4ffdf
Address 57 : 15c9mPGLku1HuW9LRtBf4jcHVpBUt8txKz | Private Key : 1eb25c90795d61c
Address 58 : 1Dn8NF8qDyyfHMktmuoQLGyjWmZXgvosXf | Private Key : 2c675b852189a21
Address 59 : 1HAX2n9Uruu9YDt4cqRgYcvtGvZj1rbUyt | Private Key : 7496cbb87cab44f
Address 60 : 1Kn5h2qpgw9mWE5jKpk8PP4qvvJ1QVy8su | Private Key : fc07a1825367bbe
Address 61 : 1AVJKwzs9AskraJLGHAZPiaZcrpDr1U6AB | Private Key : 13c96a3742f64906
Address 62 : 1Me6EfpwZK5kQziBwBfvLiHjaPGxCKLoJi | Private Key : 363d541eb611abee
Address 63 : 1NpYjtLira16LfGbGwZJ5JbDPh3ai9bjf4 | Private Key : 7cce5efdaccf6808
Address 64 : 16jY7qLJnxb7CHZyqBP8qca9d51gAjyXQN | Private Key : f7051f27b09112d4
Address 65 : 18ZMbwUFLMHoZBbfpCjUJQTCMCbktshgpe | Private Key : 1a838b13505b26867
Address 66 : 13zb1hQbWVsc2S7ZTZnP2G4undNNpdh5so | Private Key : 387c50c59d006cb6c
Address 67 : 1BY8GQbnueYofwSuFAT3USAhGjPrkxDdW9 | Private Key : 592a47c5ab1061e43
Address 68 : 1MVDYgVaSN6iKKEsbzRUAYFrYJadLYZvvZ | Private Key : fda8f781ccd4ff6ae
Address 69 : 19vkiEajfhuZ8bs8Zu2jgmC6oqZbWqhxhG | Private Key : 1254ea927aa155e362
Address 70 : 19YZECXj3SxEZMoUeJ1yiPsw8xANe7M7QR | Private Key : 349b84b6431a6c4ef1
Address 71 : 1PWo3JeB9jrGwfHDNpdGK54CRas7fsVzXU | Private Key : 4549883a4b8e41ee27
Address 72 : 1JTK7s9YVYywfm5XUH7RNhHJH1LshCaRFR | Private Key : 96e9ffb86f063ac90f
Address 73 : 12VVRNPi4SJqUTsp6FmqDqY5sGosDtysn4 | Private Key : 1fe3269c8497d2a3558
Address 74 : 1FWGcVDK3JGzCC3WtkYetULPszMaK2Jksv | Private Key : 32b341493caffcfdced
Address 75 : 1J36UjUByGroXcCvmj13U6uwaVv9caEeAt | Private Key : 4c5ce114686a1336e07
Address 76 : 1DJh2eHFYQfACPmrvpyWc8MSTYKh7w9eRF | Private Key : e0ec4c57a9730ba3456
Address 77 : 1Bxk4CQdqL9p22JEtDfdXMsng1XacifUtE | Private Key : 1a89227bbf7abc81eca1
Address 78 : 15qF6X51huDjqTmF9BJgxXdt1xcj46Jmhb | Private Key : 3a628a0f437029402a4b
Address 79 : 1ARk8HWJMn8js8tQmGUJeQHjSE7KRkn2t8 | Private Key : 51524a91846f364c07e9
Address 80 : 1BCf6rHUW6m3iH2ptsvnjgLruAiPQQepLe | Private Key : ea1a5c66dcc11b5ad180
Address 81 : 15qsCm78whspNQFydGJQk5rexzxTQopnHZ | Private Key : 1d6999b30325155a69c16
Address 82 : 13zYrYhhJxp6Ui1VV7pqa5WDhNWM45ARAC | Private Key : 21b79322fc2d647c23779
Address 83 : 14MdEb4eFcT3MVG5sPFG4jGLuHJSnt1Dk2 | Private Key : 61a4a05e63b568e7c0e1d
Address 84 : 1CMq3SvFcVEcpLMuuH8PUcNiqsK1oicG2D | Private Key : d928eef05dac219dd9b75
Address 85 : 1Kh22PvXERd2xpTQk3ur6pPEqFeckCJfAr | Private Key : 11720c4f018d51b8cebba8
Address 86 : 1K3x5L6G57Y494fDqBfrojD28UJv4s5JcK | Private Key : 351b269e4ae6c33ac26e9a
Address 87 : 1PxH3K1Shdjb7gSEoTX7UPDZ6SH4qGPrvq | Private Key : 6b1f244fd690dc02078a45
Address 88 : 16AbnZjZZipwHMkYKBSfswGWKDmXHjEpSf | Private Key : d04e8cc3d0ebf4aa556561
Address 89 : 19QciEHbGVNY4hrhfKXmcBBCrJSBZ6TaVt | Private Key : 1b075a589d9b373dbee1584
Address 90 : 1L12FHH2FHjvTviyanuiFVfmzCy46RRATU | Private Key : 2ce00bb2136a445c71e85bf
Address 91 : 1EzVHtmbN4fs4MiNk3ppEnKKhsmXYJ4s74 | Private Key : 467de4d9a8dfb892e24c5e3
Address 92 : 1AE8NzzgKE7Yhz7BWtAcAAxiFMbPo82NB5 | Private Key : a8e38ba8d5c519d249a91f4
Address 93 : 17Q7tuG2JwFFU9rXVj3uZqRtioH3mx2Jad | Private Key : 111fa8ca379d43d0a7011357
Address 94 : 1K6xGMUbs6ZTXBnhw1pippqwK6wjBWtNpL | Private Key : 2e162610a9519b0fb3f21e62
Address 95 : 19eVSDuizydXxhohGh8Ki9WY9KsHdSwoQC | Private Key : 527a792b183c7f64a0e8b1f4
Address 96 : 15ANYzzCp5BFHcCnVFzXqyibpzgPLWaD8b | Private Key : 9ff2c3e21420cbd06598e94e
Address 97 : 18ywPwj39nGjqBrQJSzZVq2izR12MDpDr8 | Private Key : 1a329279f0f598d0c2f6221a6
Address 98 : 1CaBVPrwUxbQYYswu32w7Mj4HR4maNoJSX | Private Key : 2ade793d9d8e8d2af68ff2a46
Address 99 : 1JWnE6p6UN7ZJBN7TtcbNDoRcjFtuDWoNL | Private Key : 557d0d384f0d74310bac1c97e
Address 100 : 1KCgMv8fo2TPBpddVi9jqmMmcne9uSNJ5F | Private Key : af55fc59c335c8ec67ed24826
Address 101 : 1CKCVdbDJasYmhswB6HKZHEAnNaDpK7W4n | Private Key : 10943bb3468629859af2be1c11
Address 102 : 1PXv28YxmYMaB8zxrKeZBW8dt2HK7RkRPX | Private Key : 210f601b8c4b6ed2d15ebb708c
Address 103 : 1AcAmB6jmtU6AiEcXkmiNE9TNVPsj9DULf | Private Key : 5b32c65863f1261c4f6d5d41f0
Address 104 : 1EQJvpsmhazYCcKX5Au6AZmZKRnzarMVZu | Private Key : 9b5f22dec48d499b7e71baeac4
Address 105 : 1CMjscKB3QW7SDyQ4c3C3DEUHiHRhiZVib | Private Key : 16f14fc2054cd87ee6396b33df3
Address 106 : 18KsfuHuzQaBTNLASyj15hy4LuqPUo1FNB | Private Key : 3bee2c1d9b268e0e0239864a8a9
Address 107 : 15EJFC5ZTs9nhsdvSUeBXjLAuYq3SWaxTc | Private Key : 7a402bac7f2cf31e67128c8c96a
Address 108 : 1HB1iKUqeffnVsvQsbpC6dNi1XKbyNuqao | Private Key : 9e8155c01771f37972f0785ffd2
Address 109 : 1GvgAXVCbA8FBjXfWiAms4ytFeJcKsoyhL | Private Key : 166e1a3bda0c24e1411ea76b46af
Address 110 : 12JzYkkN76xkwvcPT6AWKZtGX6w2LAgsJg | Private Key : 35c0d7234df7deb0f20cf7062444
Address 111 : 1824ZJQ7nKJ9QFTRBqn7z7dHV5EGpzUpH3 | Private Key : 50216035bc5af18f93f26dd3ad43
Address 112 : 18A7NA9FTsnJxWgkoFfPAFbQzuQxpRtCos | Private Key : cc7ca57aa8c63ddfd21b99c9f7bd
Address 113 : 1NeGn21dUDDeqFQ63xb2SpgUuXuBLA4WT4 | Private Key : 1968e5658c446ffdac9fc7f5f1877
Address 114 : 174SNxfqpdMGYy5YQcfLbSTK3MRNZEePoy | Private Key : 28a19351507823b49ccf9482d14fd
Address 115 : 1NLbHuJebVwUZ1XqDjsAyfTRUPwDQbemfv | Private Key : 60f4d11574f5deee49961d9609ac6
Address 116 : 1MnJ6hdhvK37VLmqcdEwqC3iFxyWH2PHUV | Private Key : d68c67b6ba39d8e9f021e0cfb0024
Address 117 : 1KNRfGWw7Q9Rmwsc6NT5zsdvEb9M2Wkj5Z | Private Key : 1403a281b838ab018d995f34535e69
Address 118 : 1PJZPzvGX19a7twf5HyD2VvNiPdHLzm9F6 | Private Key : 3ea8878a4895c67b9663508054f9d2
Address 119 : 1GuBBhf61rnvRe4K8zu8vdQB3kHzwFqSy7 | Private Key : 55bea8b24225cb4deb8e60778e56e4
Address 120 : 17s2b9ksz5y7abUm92cHwG8jEPCzK3dLnT | Private Key : 9c6d18023ecc489fbe834d9e4c77be
Address 121 : 1GDSuiThEV64c166LUFC9uDcVdGjqkxKyh | Private Key : 1afbc9330c6d24c216c2c724afe3041
Address 122 : 1Me3ASYt5JCTAK2XaC32RMeH34PdprrfDx | Private Key : 3b4a6a58a386e8f8af95b37a731cf0e
Address 123 : 1CdufMQL892A69KXgv6UNBD17ywWqYpKut | Private Key : 7a81240304f073409c7c83ed835a315
Address 124 : 1BkkGsX9ZM6iwL3zbqs7HWBV7SvosR6m8N | Private Key : d6ab2da3c82a77af1751b5345779f01
Address 125 : 1PXAyUB8ZoH3WD8n5zoAthYjN15yN5CVq5 | Private Key : 10e8b9b8178295319cc4f0c6b59c593a
Address 126 : 1AWCLZAjKbV1P7AHvaPNCKiB7ZWVDMxFiz | Private Key : 3334725acd4d98307a93cdac0f1bdcd1
Address 127 : 1G6EFyBRU86sThN3SSt3GrHu1sA7w7nzi4 | Private Key : 43d877dd04ec427bc79c23d83e3eb96b
Address 128 : 1MZ2L1gFrCtkkn6DnTT2e4PFUTHw9gNwaj | Private Key : a7b1f24732e21cdd77bfb1a242c3322a
Address 129 : 1Hz3uv3nNZzBVMXLGadCucgjiCs5W9vaGz | Private Key : 14ef6f7157739304a430913fcf6e5271a
Address 130 : 1Fo65aKq8s8iquMt6weF1rku1moWVEd5Ua | Private Key : 33a6cf5dbaf6e47b2d0c093c16adf1b96
Address 131 : 16zRPnT8znwq42q7XeMkZUhb1bKqgRogyy | Private Key : 6b8c15626827c392ab0f5d6f72603d0f8
Address 132 : 1KrU4dHE5WrW8rhWDsTRjR21r8t3dsrS3R | Private Key : ef7fe2606a4143dad471531c53772442c
Address 133 : 17uDfp5r4n441xkgLFmhNoSW1KWp6xVLD | Private Key : 15f76157508d9779fc8e238e1c247142d7
Address 134 : 13A3JrvXmvg5w9XGvyyR4JEJqiLz8ZySY3 | Private Key : 22a188673b96b20e974a76fd1491e46866
Address 135 : 16RGFo6hjq9ym6Pj7N5H7L1NR1rVPJyw2v | Private Key : 69bca5a75a461a887acb92fa817109ea60
Address 136 : 1UDHPdovvR985NrWSkdWQDEQ1xuRiTALq | Private Key : ebf06065edf1bfef22eb1ceb1445ea2940
Address 137 : 15nf31J46iLuK1ZkTnqHo7WgN5cARFK3RA | Private Key : 1030d7cbbde282b3963e0867b46477f1a7d
Address 138 : 1Ab4vzG6wEQBDNQM1B2bvUz4fqXXdFk2WT | Private Key : 2a436e594a1920216b6ff44c364c40658ef
Address 139 : 1Fz63c775VV9fNyj25d9Xfw3YHE6sKCxbt | Private Key : 70f361f75fafddd6de4e9553649f1cef19e
Address 140 : 1QKBaU6WAeycb3DbKbLBkX7vJiaS8r42Xo | Private Key : d926936f1916b648b87bc6848ff00427df7
Address 141 : 1CD91Vm97mLQvXhrnoMChhJx4TP9MaQkJo | Private Key : 1b7a40209d5455e7eb68b32b08ca26339231
Address 142 : 15MnK2jXPqTMURX4xC3h4mAZxyCcaWWEDD | Private Key : 31f79cab2773d5a3b645be903ca3b2b23e95
Address 143 : 13N66gCzWWHEZBxhVxG18P8wyjEWF9Yoi1 | Private Key : 687f4cadbc80e2c78dda03a6058bbf8dbe20
Address 144 : 1NevxKDYuDcCh1ZMMi6ftmWwGrZKC6j7Ux | Private Key : b81a70baf88bdaf1317291647da3b55e0cfd
Address 145 : 19GpszRNUej5yYqxXoLnbZWKew3KdVLkXg | Private Key : 1098ff29646926325b1bac056edadf8829c8c
Address 146 : 1M7ipcdYHey2Y5RZM34MBbpugghmjaV89P | Private Key : 3921b30212882e51870788c74bbede2b2cf2f
Address 147 : 18aNhurEAJsw6BAgtANpexk5ob1aGTwSeL | Private Key : 76e7f2a4d2e68993021313746c8ab4e757961
Address 148 : 1FwZXt6EpRT7Fkndzv6K4b4DFoT4trbMrV | Private Key : fa8e7dddfd0b95ec5c29f3a3272cdfbdbe19d
Address 149 : 1CXvTzR6qv8wJ7eprzUKeWxyGcHwDYP1i2 | Private Key : 1fe964248beacee112de2f98f3ef5fd3b2f9a4
Address 150 : 1MUJSJYtGPVGkBCTqGspnxyHahpt5Te8jy | Private Key : 2244ac925edc90e3689ce1dec59a936a8aebb0
Address 151 : 13Q84TNNvgcL3HJiqQPvyBb9m4hxjS3jkV | Private Key : 5a4489ed3c6c4db505137e42e54fff6c3fb43f
Address 152 : 1LuUHyrQr8PKSvbcY1v1PiuGuqFjWpDumN | Private Key : a18cf844e23a302151bb419e120c22d83673c3
Address 153 : 18192XpzzdDi2K11QVHR7td2HcPS6Qs5vg | Private Key : 1c6aa58e6b25bbcbf933a63b0e383c3915b5558
Address 154 : 1NgVmsCCJaKLzGyKLFJfVequnFW9ZvnMLN | Private Key : 3efa3bddcf768c78e3baeacbc22213f2ae255b4
Address 155 : 1AoeP37TmHdFh8uN72fu9AqgtLrUwcv2wJ | Private Key : 4ee6da4952d54368fe767f4ee7d302a9fbf7133
Address 156 : 1FTpAbQa4h8trvhQXjXnmNhqdiGBd1oraE | Private Key : aa2c3f950f806de831775eb53b3e3797279a5cf
Address 157 : 14JHoRAdmJg3XR4RjMDh6Wed6ft6hzbQe9 | Private Key : 12e434ad3465e69c3ccd3dd1c1e2ff461066396c
Address 158 : 19z6waranEf8CcP8FqNgdwUe1QRxvUNKBG | Private Key : 239856ce86999133eb532fa6650076bf4ca343bf
Address 159 : 14u4nA5sugaswb6SZgn5av2vuChdMnD9E5 | Private Key : 4b3dcbbbe1dc5b7529e118c00da635e33ae2ae8b
Address 160 : 1NBC8uXJy1GiJ6drkiZa1WuKn51ps7EPTv | Private Key : 87da417e72fef42b438bb6516cb259fb3ed015c7



Agree, I'm probably not the only one to suggest that.
And I can see many people on this topic has amazing computational skills, way beyond my league.

However, I looked some coefficients are looking like they are oscillating as I expected from a pseudo-randomic generation.

That's what is give me hope... I know is hard but let's try
By doing this in my half broken casio make me fell like Kepler  Grin Grin Grin Let's kill Tycho Brahe  Cheesy Cheesy Cheesy Cheesy

As I said way before, my hope is not to find the *exactly* address, but reduce the range because my hardware and my computer skills are not the top-notch, and I can't compete with people with gpu tho
eggsylacer
Newbie
*
Offline Offline

Activity: 8
Merit: 0


View Profile
May 12, 2024, 02:47:01 PM
 #5038

If I would be the creator I would laugh so hard about some of the things discussed here.

Guys, a logarithm is an abstract concept, not some math function.

You get a thing called a "base change". In this case we're dealing with a change of base of an element from some position in a finite field (private keys) to an element in the same position in a finite group (EC public keys) and the problem is to solve for the position without a way to go back from the latter to the first (which is assumed to be hard, but not yet proven). And this in the best case that we even have such an element, and not some fingerprint of it (an address), which makes the problem levels of more absurdly difficult. WTF is with the real numbers field log2 discussion, it makes no sense, we already know the ranges double in size at each step, of course any polynomial regression or whatever is a straight line. Dividing 1 by (2**64) is four levels of magnitude below a double-precision IEEE floating point, so what errors do you expect, they will always be after the 64-th zero decimal digit in reality. Nevermind the fact that there's an infinity of real numbers between any two real numbers, so an infinity of computations. Take 7 as a private key and try to solve back from [1/4, 1/8) interval, mission impossible.

This is not an analytical problem, it's a group theory problem.


log2 - It's just a way of representing numbers in a different way. I'll ask you again, do you know what you're talking about?
nomachine
Member
**
Offline Offline

Activity: 476
Merit: 35


View Profile
May 12, 2024, 05:43:18 PM
Last edit: May 12, 2024, 05:56:59 PM by nomachine
 #5039

That's what is give me hope... I know is hard but let's try
By doing this in my half broken casio make me fell like Kepler  Grin Grin Grin Let's kill Tycho Brahe  Cheesy Cheesy Cheesy Cheesy

As I said way before, my hope is not to find the *exactly* address, but reduce the range because my hardware and my computer skills are not the top-notch, and I can't compete with people with gpu tho


It's more likely to find a $1 million lotto ticket using Dowsing than to solve this Puzzle.  Grin

bc1qdwnxr7s08xwelpjy3cc52rrxg63xsmagv50fa8
kTimesG
Member
**
Online Online

Activity: 259
Merit: 39


View Profile
May 12, 2024, 06:03:02 PM
 #5040

If I would be the creator I would laugh so hard about some of the things discussed here.

Guys, a logarithm is an abstract concept, not some math function.

You get a thing called a "base change". In this case we're dealing with a change of base of an element from some position in a finite field (private keys) to an element in the same position in a finite group (EC public keys) and the problem is to solve for the position without a way to go back from the latter to the first (which is assumed to be hard, but not yet proven). And this in the best case that we even have such an element, and not some fingerprint of it (an address), which makes the problem levels of more absurdly difficult. WTF is with the real numbers field log2 discussion, it makes no sense, we already know the ranges double in size at each step, of course any polynomial regression or whatever is a straight line. Dividing 1 by (2**64) is four levels of magnitude below a double-precision IEEE floating point, so what errors do you expect, they will always be after the 64-th zero decimal digit in reality. Nevermind the fact that there's an infinity of real numbers between any two real numbers, so an infinity of computations. Take 7 as a private key and try to solve back from [1/4, 1/8) interval, mission impossible.

This is not an analytical problem, it's a group theory problem.


log2 - It's just a way of representing numbers in a different way. I'll ask you again, do you know what you're talking about?
I hope you are joking. That is NOT what a logarithm is.

Number: 7
Representing 7 in different ways:
Base 10: 7
Base 2: 0111
Base 7: 10
Base 16: 0x07
Base 1: <potato> <potato> <potato> <potato> <potato> <potato> <potato>

Shall I go on?

Logarithm of 7 in the infinite field of real numbers:
Base 2: 2.8073549221... (infinite number of decimals) - it counts how many bits you need to represent value 7
Base e: 1.9459101490553132... (infinite number of decimals) - it counts how many natural numbers you need that, raised to this power, yields 7

Logarithm of 7 in some modular finite field with N = 3:
log(7) = Huh mod 3 (oh no, this doesn't work, hmm... is it 0? 1? 2? damn, something is missing, maybe we didn't even define the neutral element yet? or not even an binary addition operator?)

So, do YOU know what you are talking about?
Pages: « 1 ... 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 [252] 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 ... 329 »
  Print  
 
Jump to:  

Powered by MySQL Powered by PHP Powered by SMF 1.1.19 | SMF © 2006-2009, Simple Machines Valid XHTML 1.0! Valid CSS!