Bitcoin Forum
November 05, 2024, 03:27:04 PM *
News: Latest Bitcoin Core release: 28.0 [Torrent]
 
  Home Help Search Login Register More  
  Show Posts
Pages: « 1 ... 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 [395] 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 ... 464 »
7881  Economy / Service Discussion / Re: Overview of Bitcointalk Signature-Ad Campaigns [Last update: 05-June-2019] on: June 10, 2019, 09:55:41 AM
BitVest has a few open slots in Tier E. You can apply now and stay in queue (starting from Tier E) if you want.
One new position for each rank has opened up in Tier E, apply now!
7882  Economy / Services / Re: ★☆★ 777Coin Signature Campaign ★☆★ (Member-Hero Accepted) (New) on: June 10, 2019, 09:52:27 AM
777 coin campaign observations (since 30/12/2018 to 09/6/2019)
24 weeks in total, so far (only weeks managed by Hhampuz).

Converted dataset from the spreadsheet:
Code:
. list, abb(30)

     +-------------------------------------------------------------------------------------------------+
     | id   week   postcount   btcpaid   day   month2   year        date     week2     month   quarter |
     |-------------------------------------------------------------------------------------------------|
  1. |  1      1         708    .03082    30       12   2018   30dec2018   2018w52   2018m12    2018q4 |
  2. |  2      2        1049    .04953     6        1   2019   06jan2019    2019w1    2019m1    2019q1 |
  3. |  3      3        1226    .05641    13        1   2019   13jan2019    2019w2    2019m1    2019q1 |
  4. |  4      4        1303   .060075    20        1   2019   20jan2019    2019w3    2019m1    2019q1 |
  5. |  5      5        1348    .06284    27        1   2019   27jan2019    2019w4    2019m1    2019q1 |
     |-------------------------------------------------------------------------------------------------|
  6. |  6      6        1266    .06126     3        2   2019   03feb2019    2019w5    2019m2    2019q1 |
  7. |  7      7        1263    .06225    10        2   2019   10feb2019    2019w6    2019m2    2019q1 |
  8. |  8      8        1203    .05849    17        2   2019   17feb2019    2019w7    2019m2    2019q1 |
  9. |  9      9        1203   .058315    24        2   2019   24feb2019    2019w8    2019m2    2019q1 |
 10. | 10     10        1210   .056165     3        3   2019   03mar2019    2019w9    2019m3    2019q1 |
     |-------------------------------------------------------------------------------------------------|
 11. | 11     11        1016    .05084    10        3   2019   10mar2019   2019w10    2019m3    2019q1 |
 12. | 12     12        1258   .057785    17        3   2019   17mar2019   2019w11    2019m3    2019q1 |
 13. | 13     13        1186    .05373    24        3   2019   24mar2019   2019w12    2019m3    2019q1 |
 14. | 14     14         922    .04392    31        3   2019   31mar2019   2019w13    2019m3    2019q1 |
 15. | 15     15        1107   .052805     7        4   2019   07apr2019   2019w14    2019m4    2019q2 |
     |-------------------------------------------------------------------------------------------------|
 16. | 16     16        1071    .05278    14        4   2019   14apr2019   2019w15    2019m4    2019q2 |
 17. | 17     17        1120    .05558    21        4   2019   21apr2019   2019w16    2019m4    2019q2 |
 18. | 18     18        1037   .049555    28        4   2019   28apr2019   2019w17    2019m4    2019q2 |
 19. | 19     19         910   .045645     5        5   2019   05may2019   2019w18    2019m5    2019q2 |
 20. | 20     20        1051    .05085    12        5   2019   12may2019   2019w19    2019m5    2019q2 |
     |-------------------------------------------------------------------------------------------------|
 21. | 21     21        1310    .06036    19        5   2019   19may2019   2019w20    2019m5    2019q2 |
 22. | 22     22        1392   .063185    26        5   2019   26may2019   2019w21    2019m5    2019q2 |
 23. | 23     23        1313   .058255     2        6   2019   02jun2019   2019w22    2019m6    2019q2 |
 24. | 24     24        1362   .061228     9        6   2019   09jun2019   2019w23    2019m6    2019q2 |
     +-------------------------------------------------------------------------------------------------+

Time series plots:
 
The time series plots show that both weekly postcounts and BTC-paid have reached new all time high last week.

Statistics:
- Postcount: 50% of observed weeks have total postcounts above 1203, whilst 50% of rest weeks have total postcounts below 1203, the median (p50). The mean and standard deviation are 1160 and 167, respectively. Min and max are 708 and 1392, respectively. 50% of total weekly postcounts range from 1050 to 1285 (the interquartile range from p25 to p75).
- BTC paid: 50% of observed weeks have total BTC paid above 0.0563, whilst 50% of rest weeks have total BTC paid below 0.0563, the median (p50). The mean and standard deviation are 0.0547 and 0.0074, respectively. Min and max are 0.0308 and 0.0632, respectively. 50% of total weekly BTC-paid range from 0.0508 and 0.0602 (the interquartile range from p25 to p75).
Code:
. tabstat postcount btcpaid, s(n mean sd p50 p25 p75 min max) c(s)

    variable |         N      mean        sd       p50       p25       p75       min       max
-------------+--------------------------------------------------------------------------------
   postcount |        24   1159.75  166.1393      1203      1050    1284.5       708      1392
     btcpaid |        24  .0546947  .0073923  .0562875   .050845  .0602175    .03082   .063185
----------------------------------------------------------------------------------------------

List of weeks in descending orders of total postcounts or total BTC paid
Postcount:
Code:
. list postcount week day month2 year date week2 month quarter, abb(30)

     +----------------------------------------------------------------------------------+
     | postcount   week   day   month2   year        date     week2     month   quarter |
     |----------------------------------------------------------------------------------|
  1. |      1392     22    26        5   2019   26may2019   2019w21    2019m5    2019q2 |
  2. |      1362     24     9        6   2019   09jun2019   2019w23    2019m6    2019q2 |
  3. |      1348      5    27        1   2019   27jan2019    2019w4    2019m1    2019q1 |
  4. |      1313     23     2        6   2019   02jun2019   2019w22    2019m6    2019q2 |
  5. |      1310     21    19        5   2019   19may2019   2019w20    2019m5    2019q2 |
     |----------------------------------------------------------------------------------|
  6. |      1303      4    20        1   2019   20jan2019    2019w3    2019m1    2019q1 |
  7. |      1266      6     3        2   2019   03feb2019    2019w5    2019m2    2019q1 |
  8. |      1263      7    10        2   2019   10feb2019    2019w6    2019m2    2019q1 |
  9. |      1258     12    17        3   2019   17mar2019   2019w11    2019m3    2019q1 |
 10. |      1226      3    13        1   2019   13jan2019    2019w2    2019m1    2019q1 |
     |----------------------------------------------------------------------------------|
 11. |      1210     10     3        3   2019   03mar2019    2019w9    2019m3    2019q1 |
 12. |      1203      8    17        2   2019   17feb2019    2019w7    2019m2    2019q1 |
 13. |      1203      9    24        2   2019   24feb2019    2019w8    2019m2    2019q1 |
 14. |      1186     13    24        3   2019   24mar2019   2019w12    2019m3    2019q1 |
 15. |      1120     17    21        4   2019   21apr2019   2019w16    2019m4    2019q2 |
     |----------------------------------------------------------------------------------|
 16. |      1107     15     7        4   2019   07apr2019   2019w14    2019m4    2019q2 |
 17. |      1071     16    14        4   2019   14apr2019   2019w15    2019m4    2019q2 |
 18. |      1051     20    12        5   2019   12may2019   2019w19    2019m5    2019q2 |
 19. |      1049      2     6        1   2019   06jan2019    2019w1    2019m1    2019q1 |
 20. |      1037     18    28        4   2019   28apr2019   2019w17    2019m4    2019q2 |
     |----------------------------------------------------------------------------------|
 21. |      1016     11    10        3   2019   10mar2019   2019w10    2019m3    2019q1 |
 22. |       922     14    31        3   2019   31mar2019   2019w13    2019m3    2019q1 |
 23. |       910     19     5        5   2019   05may2019   2019w18    2019m5    2019q2 |
 24. |       708      1    30       12   2018   30dec2018   2018w52   2018m12    2018q4 |
     +----------------------------------------------------------------------------------+
BTC paid:
Code:
. list btcpaid week day month2 year date week2 month quarter, abb(30)

     +--------------------------------------------------------------------------------+
     | btcpaid   week   day   month2   year        date     week2     month   quarter |
     |--------------------------------------------------------------------------------|
  1. | .063185     22    26        5   2019   26may2019   2019w21    2019m5    2019q2 |
  2. |  .06284      5    27        1   2019   27jan2019    2019w4    2019m1    2019q1 |
  3. |  .06225      7    10        2   2019   10feb2019    2019w6    2019m2    2019q1 |
  4. |  .06126      6     3        2   2019   03feb2019    2019w5    2019m2    2019q1 |
  5. | .061228     24     9        6   2019   09jun2019   2019w23    2019m6    2019q2 |
     |--------------------------------------------------------------------------------|
  6. |  .06036     21    19        5   2019   19may2019   2019w20    2019m5    2019q2 |
  7. | .060075      4    20        1   2019   20jan2019    2019w3    2019m1    2019q1 |
  8. |  .05849      8    17        2   2019   17feb2019    2019w7    2019m2    2019q1 |
  9. | .058315      9    24        2   2019   24feb2019    2019w8    2019m2    2019q1 |
 10. | .058255     23     2        6   2019   02jun2019   2019w22    2019m6    2019q2 |
     |--------------------------------------------------------------------------------|
 11. | .057785     12    17        3   2019   17mar2019   2019w11    2019m3    2019q1 |
 12. |  .05641      3    13        1   2019   13jan2019    2019w2    2019m1    2019q1 |
 13. | .056165     10     3        3   2019   03mar2019    2019w9    2019m3    2019q1 |
 14. |  .05558     17    21        4   2019   21apr2019   2019w16    2019m4    2019q2 |
 15. |  .05373     13    24        3   2019   24mar2019   2019w12    2019m3    2019q1 |
     |--------------------------------------------------------------------------------|
 16. | .052805     15     7        4   2019   07apr2019   2019w14    2019m4    2019q2 |
 17. |  .05278     16    14        4   2019   14apr2019   2019w15    2019m4    2019q2 |
 18. |  .05085     20    12        5   2019   12may2019   2019w19    2019m5    2019q2 |
 19. |  .05084     11    10        3   2019   10mar2019   2019w10    2019m3    2019q1 |
 20. | .049555     18    28        4   2019   28apr2019   2019w17    2019m4    2019q2 |
     |--------------------------------------------------------------------------------|
 21. |  .04953      2     6        1   2019   06jan2019    2019w1    2019m1    2019q1 |
 22. | .045645     19     5        5   2019   05may2019   2019w18    2019m5    2019q2 |
 23. |  .04392     14    31        3   2019   31mar2019   2019w13    2019m3    2019q1 |
 24. |  .03082      1    30       12   2018   30dec2018   2018w52   2018m12    2018q4 |
     +--------------------------------------------------------------------------------+
7883  Economy / Services / Re: ★☆★ Bitvest.io - Plinko Sig. Campaign ★☆★ (Member-Hero Accepted) (New2) on: June 10, 2019, 09:43:43 AM
BitVest campaign observations (since 30/12/2018 to 09/6/2019)
24 weeks in total, so far (only weeks managed by Hhampuz).

Converted dataset from the spreadsheet:
Code:
. list, abb(30)

     +--------------------------------------------------------------------------------------------------+
     | id   week   postcount    btcpaid   day   month2   year        date     week2     month   quarter |
     |--------------------------------------------------------------------------------------------------|
  1. |  1      1        1195   .0712025    30       12   2018   30dec2018   2018w52   2018m12    2018q4 |
  2. |  2      2        1544     .09399     6        1   2019   06jan2019    2019w1    2019m1    2019q1 |
  3. |  3      3        1666     .09738    13        1   2019   13jan2019    2019w2    2019m1    2019q1 |
  4. |  4      4        1513     .09014    20        1   2019   20jan2019    2019w3    2019m1    2019q1 |
  5. |  5      5        1523    .092315    27        1   2019   27jan2019    2019w4    2019m1    2019q1 |
     |--------------------------------------------------------------------------------------------------|
  6. |  6      6        1500    .090766     3        2   2019   03feb2019    2019w5    2019m2    2019q1 |
  7. |  7      7        1455    .088646    10        2   2019   10feb2019    2019w6    2019m2    2019q1 |
  8. |  8      8        1418    .085241    17        2   2019   17feb2019    2019w7    2019m2    2019q1 |
  9. |  9      9        1435    .087748    24        2   2019   24feb2019    2019w8    2019m2    2019q1 |
 10. | 10     10        1322     .08303     3        3   2019   03mar2019    2019w9    2019m3    2019q1 |
     |--------------------------------------------------------------------------------------------------|
 11. | 11     11        1116     .08944    10        3   2019   10mar2019   2019w10    2019m3    2019q1 |
 12. | 12     12        1663    .093939    17        3   2019   17mar2019   2019w11    2019m3    2019q1 |
 13. | 13     13        1523    .093524    24        3   2019   24mar2019   2019w12    2019m3    2019q1 |
 14. | 14     14        1408    .086465    31        3   2019   31mar2019   2019w13    2019m3    2019q1 |
 15. | 15     15        1510    .091433     7        4   2019   07apr2019   2019w14    2019m4    2019q2 |
     |--------------------------------------------------------------------------------------------------|
 16. | 16     16        1391    .087986    14        4   2019   14apr2019   2019w15    2019m4    2019q2 |
 17. | 17     17        1450    .086992    21        4   2019   21apr2019   2019w16    2019m4    2019q2 |
 18. | 18     18        1492    .090028    28        4   2019   28apr2019   2019w17    2019m4    2019q2 |
 19. | 19     19        1291   .0775045     5        5   2019   05may2019   2019w18    2019m5    2019q2 |
 20. | 20     20        1447    .084589    12        5   2019   12may2019   2019w19    2019m5    2019q2 |
     |--------------------------------------------------------------------------------------------------|
 21. | 21     21        1551    .091493    19        5   2019   19may2019   2019w20    2019m5    2019q2 |
 22. | 22     22        1560    .094425    26        5   2019   26may2019   2019w21    2019m5    2019q2 |
 23. | 23     23        1659   .0887885     2        6   2019   02jun2019   2019w22    2019m6    2019q2 |
 24. | 24     24        1650    .089767     9        6   2019   09jun2019   2019w23    2019m6    2019q2 |
     +--------------------------------------------------------------------------------------------------+

Time series plots:
 

Statistics:
- Postcount: 50% of observed weeks have total postcounts above 1496, whilst 50% of rest weeks have total postcounts below 1496, the median (p50). The mean and standard deviation are 1471 and 139, respectively. Min and max are 1116 and 1666, respectively. 50% of total weekly postcounts range from 1413 to 1548 (the interquartile range from p25 to p75).
- BTC paid: 50% of observed weeks have total BTC paid above 0.0896, whilst 50% of rest weeks have total BTC paid below 0.0896, the median (p50). The mean and standard deviation are 0.0886 and 0.0056 respectively. Min and max aare 0.0712 and 0.0974, respectively. 50% of total weekly BTC-paid range from 0.0867 to 0.0919 (the interquartile range from p25 to p75).
Code:
. tabstat postcount btcpaid, s(n mean sd p50 p25 p75 min max) c(s)

    variable |         N      mean        sd       p50       p25       p75       min       max
-------------+--------------------------------------------------------------------------------
   postcount |        24  1470.083   139.007      1496      1413    1547.5      1116      1666
     btcpaid |        24   .088618  .0056208  .0896035  .0867285   .091904  .0712025    .09738
----------------------------------------------------------------------------------------------

List of weeks in descending orders of total postcounts or total BTC paid
Postcount:
Code:
. list postcount week day month2 year date week2 month quarter, abb(30)

     +----------------------------------------------------------------------------------+
     | postcount   week   day   month2   year        date     week2     month   quarter |
     |----------------------------------------------------------------------------------|
  1. |      1666      3    13        1   2019   13jan2019    2019w2    2019m1    2019q1 |
  2. |      1663     12    17        3   2019   17mar2019   2019w11    2019m3    2019q1 |
  3. |      1659     23     2        6   2019   02jun2019   2019w22    2019m6    2019q2 |
  4. |      1650     24     9        6   2019   09jun2019   2019w23    2019m6    2019q2 |
  5. |      1560     22    26        5   2019   26may2019   2019w21    2019m5    2019q2 |
     |----------------------------------------------------------------------------------|
  6. |      1551     21    19        5   2019   19may2019   2019w20    2019m5    2019q2 |
  7. |      1544      2     6        1   2019   06jan2019    2019w1    2019m1    2019q1 |
  8. |      1523      5    27        1   2019   27jan2019    2019w4    2019m1    2019q1 |
  9. |      1523     13    24        3   2019   24mar2019   2019w12    2019m3    2019q1 |
 10. |      1513      4    20        1   2019   20jan2019    2019w3    2019m1    2019q1 |
     |----------------------------------------------------------------------------------|
 11. |      1510     15     7        4   2019   07apr2019   2019w14    2019m4    2019q2 |
 12. |      1500      6     3        2   2019   03feb2019    2019w5    2019m2    2019q1 |
 13. |      1492     18    28        4   2019   28apr2019   2019w17    2019m4    2019q2 |
 14. |      1455      7    10        2   2019   10feb2019    2019w6    2019m2    2019q1 |
 15. |      1450     17    21        4   2019   21apr2019   2019w16    2019m4    2019q2 |
     |----------------------------------------------------------------------------------|
 16. |      1447     20    12        5   2019   12may2019   2019w19    2019m5    2019q2 |
 17. |      1435      9    24        2   2019   24feb2019    2019w8    2019m2    2019q1 |
 18. |      1418      8    17        2   2019   17feb2019    2019w7    2019m2    2019q1 |
 19. |      1408     14    31        3   2019   31mar2019   2019w13    2019m3    2019q1 |
 20. |      1391     16    14        4   2019   14apr2019   2019w15    2019m4    2019q2 |
     |----------------------------------------------------------------------------------|
 21. |      1322     10     3        3   2019   03mar2019    2019w9    2019m3    2019q1 |
 22. |      1291     19     5        5   2019   05may2019   2019w18    2019m5    2019q2 |
 23. |      1195      1    30       12   2018   30dec2018   2018w52   2018m12    2018q4 |
 24. |      1116     11    10        3   2019   10mar2019   2019w10    2019m3    2019q1 |
     +----------------------------------------------------------------------------------+
BTC paid:
Code:
. list btcpaid week day month2 year date week2 month quarter, abb(30)

     +---------------------------------------------------------------------------------+
     |  btcpaid   week   day   month2   year        date     week2     month   quarter |
     |---------------------------------------------------------------------------------|
  1. |   .09738      3    13        1   2019   13jan2019    2019w2    2019m1    2019q1 |
  2. |  .094425     22    26        5   2019   26may2019   2019w21    2019m5    2019q2 |
  3. |   .09399      2     6        1   2019   06jan2019    2019w1    2019m1    2019q1 |
  4. |  .093939     12    17        3   2019   17mar2019   2019w11    2019m3    2019q1 |
  5. |  .093524     13    24        3   2019   24mar2019   2019w12    2019m3    2019q1 |
     |---------------------------------------------------------------------------------|
  6. |  .092315      5    27        1   2019   27jan2019    2019w4    2019m1    2019q1 |
  7. |  .091493     21    19        5   2019   19may2019   2019w20    2019m5    2019q2 |
  8. |  .091433     15     7        4   2019   07apr2019   2019w14    2019m4    2019q2 |
  9. |  .090766      6     3        2   2019   03feb2019    2019w5    2019m2    2019q1 |
 10. |   .09014      4    20        1   2019   20jan2019    2019w3    2019m1    2019q1 |
     |---------------------------------------------------------------------------------|
 11. |  .090028     18    28        4   2019   28apr2019   2019w17    2019m4    2019q2 |
 12. |  .089767     24     9        6   2019   09jun2019   2019w23    2019m6    2019q2 |
 13. |   .08944     11    10        3   2019   10mar2019   2019w10    2019m3    2019q1 |
 14. | .0887885     23     2        6   2019   02jun2019   2019w22    2019m6    2019q2 |
 15. |  .088646      7    10        2   2019   10feb2019    2019w6    2019m2    2019q1 |
     |---------------------------------------------------------------------------------|
 16. |  .087986     16    14        4   2019   14apr2019   2019w15    2019m4    2019q2 |
 17. |  .087748      9    24        2   2019   24feb2019    2019w8    2019m2    2019q1 |
 18. |  .086992     17    21        4   2019   21apr2019   2019w16    2019m4    2019q2 |
 19. |  .086465     14    31        3   2019   31mar2019   2019w13    2019m3    2019q1 |
 20. |  .085241      8    17        2   2019   17feb2019    2019w7    2019m2    2019q1 |
     |---------------------------------------------------------------------------------|
 21. |  .084589     20    12        5   2019   12may2019   2019w19    2019m5    2019q2 |
 22. |   .08303     10     3        3   2019   03mar2019    2019w9    2019m3    2019q1 |
 23. | .0775045     19     5        5   2019   05may2019   2019w18    2019m5    2019q2 |
 24. | .0712025      1    30       12   2018   30dec2018   2018w52   2018m12    2018q4 |
     +---------------------------------------------------------------------------------+
7884  Economy / Gambling / Re: ▄■▀■▄ 🌟BITVEST🌟 💰WIN BY 🔶 PLAY 📈 INVEST ☕ SOCIAL➡🔺PLINKO🎲DICE🎰SLOT🎡SPIN on: June 09, 2019, 04:43:19 PM
Tell you, friend, to invite more friend by referral link and invest also so that you can make some money by inviting your friends Cool
Is it your first time to join crypto casinos? It is basic additional income from most of casinos, not only BitVest. Casinos mostly give bonus for their users through referral links. There are some exchanges apply the same strategy to catch new users, but it is less common compared to casinos.
7885  Economy / Gambling / Re: SwC Poker ♣️ BITCOIN POKER 3.0 ♣️ BBJ🌟 ♣️ BIG BTC🏆 ♣ Win✅ Mac✅ Android✅ HTML5✅ on: June 09, 2019, 02:35:38 PM
SwC has decided to cover the bitcoin network fee for player withdrawals while we build lightning network functionality.
Lightning Network on SwC Poker platform, that will help to increase speed of transactions; and decrease transactions fees. Because there are more competitors, there are less dictators, or in other words cheaper transaction speed is utmost thing for SwC growing further. Moreover, SwC team has shown their strong opinion on abusers and the SwC platform has already had its protections for such potential abusements.
7886  Alternate cryptocurrencies / Service Discussion (Altcoins) / Re: [Vote] Next coin to be added to Stake.com & Primedice on: June 09, 2019, 02:23:48 PM
I voted for DASH and Stellar, then saw that Stellar by now has stood at the first position of the Vote. It is likely that Stellar got big supports due to its cheap price, and cheap transaction fees. DASH has also had good position with high percentage of vote. Monero, can be another good candidate, but I don't support it because no one knows how governments will react with Monero in months or years to come. For stable casino operations, we should stay away from potential vulnerable coin in aspect of local law enforcement.
7887  Other / Meta / Re: Merit & new rank requirements on: June 09, 2019, 07:03:09 AM
Update:

Time series plots:

(1) Intra-day merits:
Full dataset:

Truncated dataset:

(2) Merits over days of week:
Outliers displayed as red circles.

Outliers non-displayed.

(3) Median and interquartile range of intra-day merits over weeks

(4) Intra-week merits:

For more details, please get them there:
Time Series Analysis on Distributed Merits in the forum (daily, weekly, monthly)
Observation on interquartile range of intra-day merits with time series plot
7888  Other / Meta / Re: Observation on interquartile range of intra-day merits with time series plot on: June 09, 2019, 06:59:08 AM
Update:

Time series plot of median and interquartile range


Dataset for median, interquartile range of intraday merits
Code:
. list week median q1 q3 merit

     +------------------------------------------+
     |    week   median      q1      q3   merit |
     |------------------------------------------|
  1. | 2018w26      733     609     991    4457 |
  2. | 2018w27      715     598     979    4253 |
  3. | 2018w28      707     592     963    4239 |
  4. | 2018w29      693     589     922    4159 |
  5. | 2018w30      684     577     902    3652 |
     |------------------------------------------|
  6. | 2018w31      682     575     891    3798 |
  7. | 2018w32      675     567     880    3994 |
  8. | 2018w33      667     559     867    3618 |
  9. | 2018w34      652     555     848    3789 |
 10. | 2018w35      642     537     844    3065 |
     |------------------------------------------|
 11. | 2018w36      639     528     838    3574 |
 12. | 2018w37      634     528     829    5630 |
 13. | 2018w38      641     530     846    7825 |
 14. | 2018w39      640     531     839    4388 |
 15. | 2018w40      639     528     829    4271 |
     |------------------------------------------|
 16. | 2018w41      637     528     808    3800 |
 17. | 2018w42      639     530     807    4821 |
 18. | 2018w43      639     528     801    3945 |
 19. | 2018w44      628     521     796    3339 |
 20. | 2018w45      630     522     789    4513 |
     |------------------------------------------|
 21. | 2018w46      626     521     786    3722 |
 22. | 2018w47    626.5     521     782    4558 |
 23. | 2018w48      626     521     774    3750 |
 24. | 2018w49    621.5     517     773    3560 |
 25. | 2018w50      619     517     768    3782 |
     |------------------------------------------|
 26. | 2018w51    618.5     515   766.5    3753 |
 27. | 2018w52    616.5   509.5   762.5    3278 |
 28. |  2019w1      616     510     766    4793 |
 29. |  2019w2    618.5     513     773    6624 |
 30. |  2019w3      620     514     774    5306 |
     |------------------------------------------|
 31. |  2019w4    621.5   516.5   770.5    4659 |
 32. |  2019w5      620     516     773    4474 |
 33. |  2019w6    619.5     517     768    4318 |
 34. |  2019w7      618     519     767    4207 |
 35. |  2019w8    618.5   518.5   766.5    4507 |
     |------------------------------------------|
 36. |  2019w9      619     518     766    4625 |
 37. | 2019w10      623     521     764    4901 |
 38. | 2019w11      623     521     761    4318 |
 39. | 2019w12    625.5     521   759.5    4598 |
 40. | 2019w13      626     522     764    6120 |
     |------------------------------------------|
 41. | 2019w14      626     523     760    4418 |
 42. | 2019w15      628     526     761    5259 |
 43. | 2019w16      630     528   762.5    4680 |
 44. | 2019w17      628     528     761    4450 |
 45. | 2019w18      628     528     761    4756 |
     |------------------------------------------|
 46. | 2019w19      632     530     761    5434 |
 47. | 2019w20      636     531     765    5202 |
 48. | 2019w21      636     531     764    4571 |
 49. | 2019w22      637     531     760    4336 |


List of median, q1, q3 of intra-day merits over weeks, in descending orders of medians.
Code:
. list week median q1 q3 merit

     +------------------------------------------+
     |    week   median      q1      q3   merit |
     |------------------------------------------|
  1. |  2019w1      616     510     766    4793 |
  2. | 2018w52    616.5   509.5   762.5    3278 |
  3. |  2019w7      618     519     767    4207 |
  4. | 2018w51    618.5     515   766.5    3753 |
  5. |  2019w8    618.5   518.5   766.5    4507 |
     |------------------------------------------|
  6. |  2019w2    618.5     513     773    6624 |
  7. | 2018w50      619     517     768    3782 |
  8. |  2019w9      619     518     766    4625 |
  9. |  2019w6    619.5     517     768    4318 |
 10. |  2019w5      620     516     773    4474 |
     |------------------------------------------|
 11. |  2019w3      620     514     774    5306 |
 12. |  2019w4    621.5   516.5   770.5    4659 |
 13. | 2018w49    621.5     517     773    3560 |
 14. | 2019w10      623     521     764    4901 |
 15. | 2019w11      623     521     761    4318 |
     |------------------------------------------|
 16. | 2019w12    625.5     521   759.5    4598 |
 17. | 2019w14      626     523     760    4418 |
 18. | 2018w48      626     521     774    3750 |
 19. | 2018w46      626     521     786    3722 |
 20. | 2019w13      626     522     764    6120 |
     |------------------------------------------|
 21. | 2018w47    626.5     521     782    4558 |
 22. | 2019w15      628     526     761    5259 |
 23. | 2019w17      628     528     761    4450 |
 24. | 2019w18      628     528     761    4756 |
 25. | 2018w44      628     521     796    3339 |
     |------------------------------------------|
 26. | 2019w16      630     528   762.5    4680 |
 27. | 2018w45      630     522     789    4513 |
 28. | 2019w19      632     530     761    5434 |
 29. | 2018w37      634     528     829    5630 |
 30. | 2019w20      636     531     765    5202 |
     |------------------------------------------|
 31. | 2019w21      636     531     764    4571 |
 32. | 2018w41      637     528     808    3800 |
 33. | 2019w22      637     531     760    4336 |
 34. | 2018w42      639     530     807    4821 |
 35. | 2018w43      639     528     801    3945 |
     |------------------------------------------|
 36. | 2018w36      639     528     838    3574 |
 37. | 2018w40      639     528     829    4271 |
 38. | 2018w39      640     531     839    4388 |
 39. | 2018w38      641     530     846    7825 |
 40. | 2018w35      642     537     844    3065 |
     |------------------------------------------|
 41. | 2018w34      652     555     848    3789 |
 42. | 2018w33      667     559     867    3618 |
 43. | 2018w32      675     567     880    3994 |
 44. | 2018w31      682     575     891    3798 |
 45. | 2018w30      684     577     902    3652 |
     |------------------------------------------|
 46. | 2018w29      693     589     922    4159 |
 47. | 2018w28      707     592     963    4239 |
 48. | 2018w27      715     598     979    4253 |
 49. | 2018w26      733     609     991    4457 |

Data source:
- From LoyceV's weekly data dumps.
- From my converted datasets in the topic: Time Series Analysis on Distributed Merits in the forum (daily, weekly, monthly)
7889  Other / Meta / Re: Time Series Analysis on Distributed Merits in the forum (daily, weekly, monthly) on: June 09, 2019, 06:48:24 AM
ABSTRACT


Intra-day merits:
Notes:
- The part of the asbstract describes figures of intraday merits over the period from 19/2/2018 to 03/6/2019 (truncated dataset);
- Days from 24/1/2018 to 18/2/2018 truncated due to highly potential outliers; and days after 03/6/2019 truncated as well due to incomplete week (the 2019w23);
- Statistics presented in the post are for truncated dataset

(1) Potential outliers are days that have intraday total merits beyond 182 or 1114;
(2) Median of intraday merits over the period is 637;
(3) 50% of observed days have their intra-day merits range from 531 to 760 (the interquartile range);
(4) Friday [in GTM time] is the day over weeks has lowest intraday merits in terms of both median and mean, at 580, and 614, respectively.
(5) Monday [in GTM time] is the day over weeks has highest intraday merits in terms of median and mean, at 676, and 742.
(6) There are 28 potential outliers in total, and there is only four potential outlier days happened in early weeks of 2019, on 09/01/2019, 14/01/2019, 27/3/2019, and 13/5/2019, at 1161, 1127, 1249, and 1150, respectively.
(7) Minimum and maximum of intraday merits (full dataset) are 312 and 13018, on 11/2/2019 and 24/1/2018, respectively.


Intra-week merits:
Notes:
The part of the abstract use full dataset, only dropped last two days due to incomple week (2019w23).

(1)   The median of intra-week merits is 4527;
(2)   50% of observed weeks (71 weeeks in total), have total merits in the range from 3994 to 5306 (the interquaritle range of intra-week merits).
(3)   Minimum and maximum of intraweek merits are 3065 and 30949, in 2018w35, and 2018w4, respectively;
(4)   Eight potential outliers [beyond 2026 or 7274], all of them occurred in the year 2018.
7890  Other / Meta / Re: Time Series Analysis on Distributed Merits in the forum (daily, weekly, monthly) on: June 09, 2019, 06:46:43 AM
Update on intra-week merits (from 24/1/2018 to 03/6/2019)

Converted dataset:
Code:
. list merit week

     +-----------------+
     | merit      week |
     |-----------------|
  1. | 30949    2018w4 |
  2. | 19958    2018w5 |
  3. | 13304    2018w6 |
  4. | 11722    2018w7 |
  5. |  8758    2018w8 |
     |-----------------|
  6. |  8806    2018w9 |
  7. |  7253   2018w10 |
  8. |  7309   2018w11 |
  9. |  6941   2018w12 |
 10. |  6707   2018w13 |
     |-----------------|
 11. |  6415   2018w14 |
 12. |  5487   2018w15 |
 13. |  4631   2018w16 |
 14. |  4585   2018w17 |
 15. |  4953   2018w18 |
     |-----------------|
 16. |  4753   2018w19 |
 17. |  4346   2018w20 |
 18. |  3854   2018w21 |
 19. |  4183   2018w22 |
 20. |  4527   2018w23 |
     |-----------------|
 21. |  3818   2018w24 |
 22. |  4921   2018w25 |
 23. |  4457   2018w26 |
 24. |  4253   2018w27 |
 25. |  4239   2018w28 |
     |-----------------|
 26. |  4159   2018w29 |
 27. |  3652   2018w30 |
 28. |  3798   2018w31 |
 29. |  3994   2018w32 |
 30. |  3618   2018w33 |
     |-----------------|
 31. |  3789   2018w34 |
 32. |  3065   2018w35 |
 33. |  3574   2018w36 |
 34. |  5630   2018w37 |
 35. |  7825   2018w38 |
     |-----------------|
 36. |  4388   2018w39 |
 37. |  4271   2018w40 |
 38. |  3800   2018w41 |
 39. |  4821   2018w42 |
 40. |  3945   2018w43 |
     |-----------------|
 41. |  3339   2018w44 |
 42. |  4513   2018w45 |
 43. |  3722   2018w46 |
 44. |  4558   2018w47 |
 45. |  3750   2018w48 |
     |-----------------|
 46. |  3560   2018w49 |
 47. |  3782   2018w50 |
 48. |  3753   2018w51 |
 49. |  3278   2018w52 |
 50. |  4793    2019w1 |
     |-----------------|
 51. |  6624    2019w2 |
 52. |  5306    2019w3 |
 53. |  4659    2019w4 |
 54. |  4474    2019w5 |
 55. |  4318    2019w6 |
     |-----------------|
 56. |  4207    2019w7 |
 57. |  4507    2019w8 |
 58. |  4625    2019w9 |
 59. |  4901   2019w10 |
 60. |  4318   2019w11 |
     |-----------------|
 61. |  4598   2019w12 |
 62. |  6120   2019w13 |
 63. |  4418   2019w14 |
 64. |  5259   2019w15 |
 65. |  4680   2019w16 |
     |-----------------|
 66. |  4450   2019w17 |
 67. |  4756   2019w18 |
 68. |  5434   2019w19 |
 69. |  5202   2019w20 |
 70. |  4571   2019w21 |
     |-----------------|
 71. |  4336   2019w22 |
     +-----------------+

Time series plot

Basic statistics:
- 50% of observed weeks (71 weeks) have total intra-week merits above 4527, whilst the rest 50% of them have total intra-week merits below 4527. 4527 is the median - p50.
- 50% of observed weeks have total intra-week merits fluctuated in the range from 3994 to 5306 (the interquartile range, from p25 to p75, in raw statistics below).
- Min - max: 3065 - 30949.

Code:
. tabstat merit, s(n mean sd p50 p25 p75 min max)

    variable |         N      mean        sd       p50       p25       p75       min       max
-------------+--------------------------------------------------------------------------------
       merit |        71  5581.254  3945.613      4527      3994      5306      3065     30949
----------------------------------------------------------------------------------------------

Potential outliers:
Code:
. di 5306-3994
1312

. di 1312*1.5
1968

. di 5306+1968
7274

. di 3994-1968
2026
It means that potential outliers are weeks that have intra-week merits beyond 2026 or 7274.
How many weeks are potential outliers?
Code:
. count if (merit >= 7274 | merit < 2026) & merit != .
  8
8 weeks are outliers, in total.
List of those seven weeks:
Code:
. list merit week if merit >=7274 | merit <= 2026

     +-----------------+
     | merit      week |
     |-----------------|
  1. | 30949    2018w4 |
  2. | 19958    2018w5 |
  3. | 13304    2018w6 |
  4. | 11722    2018w7 |
  5. |  8758    2018w8 |
     |-----------------|
  6. |  8806    2018w9 |
  8. |  7309   2018w11 |
 35. |  7825   2018w38 |
     +-----------------+
All of them occured in the year 2018.  Grin
7891  Other / Meta / Re: Time Series Analysis on Distributed Merits in the forum (daily, weekly, monthly) on: June 09, 2019, 06:41:52 AM
Medians and means of intra-day merits over days of weeks.
Colors:
- Green: highest.
- Red: Lowest.

- In median, the highest days are Monday, Thursday, and Wednesday at 676, 672, and 665, respectively; whislt the lowest days are Friday, Sunday, and Saturday at 580, 617, and 618, respectively.
- In means, the highest days are Monday, Wednesday, and Tuesday, at 742, 717, and 695, respectively; whilst the lowest days are Friday, Saturday, and Thursday at 614, 626, and 686, respectively.
- Monday has still been the highest day in terms of median and mean of intra-day merits over weeks, in contrast Friday is the lowest days in terms of median, and mean of intra-day merits over weeks.

Calendar day is in GMT time.
To take away all doubt: the first Merit was this one:
Code:
1516831941	1	2818066.msg28853325	35	877396
Use EpochConverter to convert 1516831941 (Unix Time) to GMT: Wednesday 24 January 2018 22:12:21.

Basic statistics:
Code:
. tabstat merit, s(n mean sd p50 p25 p75 min max) format(%9.1f) by(dofw)

Summary for variables: merit
     by categories of: dofw

     dofw |         N      mean        sd       p50       p25       p75       min       max
----------+--------------------------------------------------------------------------------
   Sunday |      67.0     691.4     298.9     617.0     511.0     796.0     389.0    2463.0
   Monday |      68.0     741.4     271.9     676.0     573.0     803.0     312.0    1862.0
  Tuesday |      67.0     694.7     204.7     638.0     585.0     758.0     383.0    1326.0
Wednesday |      67.0     716.8     208.8     665.0     562.0     761.0     435.0    1268.0
 Thursday |      67.0     686.0     207.5     672.0     528.0     804.0     347.0    1333.0
   Friday |      67.0     613.8     203.2     580.0     499.0     682.0     348.0    1696.0
 Saturday |      67.0     626.0     200.8     618.0     482.0     688.0     316.0    1409.0
----------+--------------------------------------------------------------------------------
    Total |     470.0     681.6     233.5     636.5     531.0     760.0     312.0    2463.0
-------------------------------------------------------------------------------------------

Box plots
Outliers displayed as red circles.

Outliers non-displayed.
7892  Other / Meta / Re: Time Series Analysis on Distributed Merits in the forum (daily, weekly, monthly) on: June 09, 2019, 06:35:59 AM
List of the top 50-highest day in terms of intra-day merits:
Code:
. list merit id date dofw day month2 year week month

     +-------------------------------------------------------------------------------+
     | merit    id        date        dofw   day   month2   year      week     month |
     |-------------------------------------------------------------------------------|
  1. | 13018     1   24jan2018   Wednesday    24        1   2018    2018w4    2018m1 |
  2. |  6761     2   25jan2018    Thursday    25        1   2018    2018w4    2018m1 |
  3. |  4493     3   26jan2018      Friday    26        1   2018    2018w4    2018m1 |
  4. |  4192     7   30jan2018     Tuesday    30        1   2018    2018w5    2018m1 |
  5. |  3799     6   29jan2018      Monday    29        1   2018    2018w5    2018m1 |
     |-------------------------------------------------------------------------------|
  6. |  3489     4   27jan2018    Saturday    27        1   2018    2018w4    2018m1 |
  7. |  3188     5   28jan2018      Sunday    28        1   2018    2018w4    2018m1 |
  8. |  2820     8   31jan2018   Wednesday    31        1   2018    2018w5    2018m1 |
  9. |  2568    10   02feb2018      Friday     2        2   2018    2018w5    2018m2 |
 10. |  2545     9   01feb2018    Thursday     1        2   2018    2018w5    2018m2 |
     |-------------------------------------------------------------------------------|
 11. |  2513    22   14feb2018   Wednesday    14        2   2018    2018w7    2018m2 |
 12. |  2463   236   16sep2018      Sunday    16        9   2018   2018w37    2018m9 |
 13. |  2308    14   06feb2018     Tuesday     6        2   2018    2018w6    2018m2 |
 14. |  2167    12   04feb2018      Sunday     4        2   2018    2018w5    2018m2 |
 15. |  2141    15   07feb2018   Wednesday     7        2   2018    2018w6    2018m2 |
     |-------------------------------------------------------------------------------|
 16. |  2141    16   08feb2018    Thursday     8        2   2018    2018w6    2018m2 |
 17. |  2077    13   05feb2018      Monday     5        2   2018    2018w6    2018m2 |
 18. |  1991    23   15feb2018    Thursday    15        2   2018    2018w7    2018m2 |
 19. |  1867    11   03feb2018    Saturday     3        2   2018    2018w5    2018m2 |
 20. |  1862   237   17sep2018      Monday    17        9   2018   2018w38    2018m9 |
     |-------------------------------------------------------------------------------|
 21. |  1747    18   10feb2018    Saturday    10        2   2018    2018w6    2018m2 |
 22. |  1696    38   02mar2018      Friday     2        3   2018    2018w9    2018m3 |
 23. |  1608    25   17feb2018    Saturday    17        2   2018    2018w7    2018m2 |
 24. |  1579    21   13feb2018     Tuesday    13        2   2018    2018w7    2018m2 |
 25. |  1448    17   09feb2018      Friday     9        2   2018    2018w6    2018m2 |
     |-------------------------------------------------------------------------------|
 26. |  1442    19   11feb2018      Sunday    11        2   2018    2018w6    2018m2 |
 27. |  1411    24   16feb2018      Friday    16        2   2018    2018w7    2018m2 |
 28. |  1409    32   24feb2018    Saturday    24        2   2018    2018w8    2018m2 |
 29. |  1403    27   19feb2018      Monday    19        2   2018    2018w8    2018m2 |
 30. |  1382    34   26feb2018      Monday    26        2   2018    2018w9    2018m2 |
     |-------------------------------------------------------------------------------|
 31. |  1354    48   12mar2018      Monday    12        3   2018   2018w11    2018m3 |
 32. |  1333    37   01mar2018    Thursday     1        3   2018    2018w9    2018m3 |
 33. |  1331    20   12feb2018      Monday    12        2   2018    2018w7    2018m2 |
 34. |  1326    35   27feb2018     Tuesday    27        2   2018    2018w9    2018m2 |
 35. |  1322    56   20mar2018     Tuesday    20        3   2018   2018w12    2018m3 |
     |-------------------------------------------------------------------------------|
 36. |  1294   238   18sep2018     Tuesday    18        9   2018   2018w38    2018m9 |
 37. |  1289    26   18feb2018      Sunday    18        2   2018    2018w7    2018m2 |
 38. |  1279    30   22feb2018    Thursday    22        2   2018    2018w8    2018m2 |
 39. |  1268   239   19sep2018   Wednesday    19        9   2018   2018w38    2018m9 |
 40. |  1266    29   21feb2018   Wednesday    21        2   2018    2018w8    2018m2 |
     |-------------------------------------------------------------------------------|
 41. |  1249   428   27mar2019   Wednesday    27        3   2019   2019w13    2019m3 |
 42. |  1245    41   05mar2018      Monday     5        3   2018   2018w10    2018m3 |
 43. |  1233    68   01apr2018      Sunday     1        4   2018   2018w13    2018m4 |
 44. |  1227    57   21mar2018   Wednesday    21        3   2018   2018w12    2018m3 |
 45. |  1186    33   25feb2018      Sunday    25        2   2018    2018w8    2018m2 |
     |-------------------------------------------------------------------------------|
 46. |  1169    28   20feb2018     Tuesday    20        2   2018    2018w8    2018m2 |
 47. |  1161   351   09jan2019   Wednesday     9        1   2019    2019w2    2019m1 |
 48. |  1159    50   14mar2018   Wednesday    14        3   2018   2018w11    2018m3 |
 49. |  1150   475   13may2019      Monday    13        5   2019   2019w19    2019m5 |
 50. |  1146    69   02apr2018      Monday     2        4   2018   2018w14    2018m4 |
     |-------------------------------------------------------------------------------|

List of the top 50-lowest days in terms of intra-day merits:
Code:
. list merit id date dofw day month2 year week month

     +-------------------------------------------------------------------------------+
     | merit    id        date        dofw   day   month2   year      week     month |
     |-------------------------------------------------------------------------------|
  1. |   312   335   24dec2018      Monday    24       12   2018   2018w52   2018m12 |
  2. |   316   333   22dec2018    Saturday    22       12   2018   2018w51   2018m12 |
  3. |   325   340   29dec2018    Saturday    29       12   2018   2018w52   2018m12 |
  4. |   347   298   17nov2018    Saturday    17       11   2018   2018w46   2018m11 |
  5. |   347   338   27dec2018    Thursday    27       12   2018   2018w52   2018m12 |
     |-------------------------------------------------------------------------------|
  6. |   348   304   23nov2018      Friday    23       11   2018   2018w47   2018m11 |
  7. |   370   122   25may2018      Friday    25        5   2018   2018w21    2018m5 |
  8. |   376   191   02aug2018    Thursday     2        8   2018   2018w31    2018m8 |
  9. |   376   342   31dec2018      Monday    31       12   2018   2018w52   2018m12 |
 10. |   377   326   15dec2018    Saturday    15       12   2018   2018w50   2018m12 |
     |-------------------------------------------------------------------------------|
 11. |   379   220   31aug2018      Friday    31        8   2018   2018w35    2018m8 |
 12. |   383   217   28aug2018     Tuesday    28        8   2018   2018w35    2018m8 |
 13. |   385   214   25aug2018    Saturday    25        8   2018   2018w34    2018m8 |
 14. |   386   339   28dec2018      Friday    28       12   2018   2018w52   2018m12 |
 15. |   389   341   30dec2018      Sunday    30       12   2018   2018w52   2018m12 |
     |-------------------------------------------------------------------------------|
 16. |   394   345   03jan2019    Thursday     3        1   2019    2019w1    2019m1 |
 17. |   395   228   08sep2018    Saturday     8        9   2018   2018w36    2018m9 |
 18. |   397   320   09dec2018      Sunday     9       12   2018   2018w49   2018m12 |
 19. |   399   262   12oct2018      Friday    12       10   2018   2018w41   2018m10 |
 20. |   402   329   18dec2018     Tuesday    18       12   2018   2018w51   2018m12 |
     |-------------------------------------------------------------------------------|
 21. |   405   287   06nov2018     Tuesday     6       11   2018   2018w45   2018m11 |
 22. |   412   403   02mar2019    Saturday     2        3   2019    2019w9    2019m3 |
 23. |   412   222   02sep2018      Sunday     2        9   2018   2018w35    2018m9 |
 24. |   415   109   12may2018    Saturday    12        5   2018   2018w19    2018m5 |
 25. |   415   278   28oct2018      Sunday    28       10   2018   2018w43   2018m10 |
     |-------------------------------------------------------------------------------|
 26. |   418   186   28jul2018    Saturday    28        7   2018   2018w30    2018m7 |
 27. |   420   187   29jul2018      Sunday    29        7   2018   2018w30    2018m7 |
 28. |   421   192   03aug2018      Friday     3        8   2018   2018w31    2018m8 |
 29. |   422   140   12jun2018     Tuesday    12        6   2018   2018w24    2018m6 |
 30. |   424   276   26oct2018      Friday    26       10   2018   2018w43   2018m10 |
     |-------------------------------------------------------------------------------|
 31. |   424   313   02dec2018      Sunday     2       12   2018   2018w48   2018m12 |
 32. |   426   277   27oct2018    Saturday    27       10   2018   2018w43   2018m10 |
 33. |   428   418   17mar2019      Sunday    17        3   2019   2019w11    2019m3 |
 34. |   430   264   14oct2018      Sunday    14       10   2018   2018w41   2018m10 |
 35. |   430   284   03nov2018    Saturday     3       11   2018   2018w44   2018m11 |
     |-------------------------------------------------------------------------------|
 36. |   432   208   19aug2018      Sunday    19        8   2018   2018w33    2018m8 |
 37. |   432   221   01sep2018    Saturday     1        9   2018   2018w35    2018m9 |
 38. |   433   282   01nov2018    Thursday     1       11   2018   2018w44   2018m11 |
 39. |   435   190   01aug2018   Wednesday     1        8   2018   2018w31    2018m8 |
 40. |   435   154   26jun2018     Tuesday    26        6   2018   2018w26    2018m6 |
     |-------------------------------------------------------------------------------|
 41. |   444   182   24jul2018     Tuesday    24        7   2018   2018w30    2018m7 |
 42. |   445   143   15jun2018      Friday    15        6   2018   2018w24    2018m6 |
 43. |   450   373   31jan2019    Thursday    31        1   2019    2019w5    2019m1 |
 44. |   451   206   17aug2018      Friday    17        8   2018   2018w33    2018m8 |
 45. |   454   283   02nov2018      Friday     2       11   2018   2018w44   2018m11 |
     |-------------------------------------------------------------------------------|
 46. |   455   167   09jul2018      Monday     9        7   2018   2018w28    2018m7 |
 47. |   455   229   09sep2018      Sunday     9        9   2018   2018w36    2018m9 |
 48. |   457   216   27aug2018      Monday    27        8   2018   2018w35    2018m8 |
 49. |   458   324   13dec2018    Thursday    13       12   2018   2018w50   2018m12 |
 50. |   458   227   07sep2018      Friday     7        9   2018   2018w36    2018m9 |
     |-------------------------------------------------------------------------------|

During the period from 24/1/2018 to 03/6/2019, the minimum and maximum of intra-day merits are 312 and 13018 , on 24/12/2018 and 24/1/2018, respectively.
7893  Other / Meta / Re: Time Series Analysis on Distributed Merits in the forum (daily, weekly, monthly) on: June 09, 2019, 06:34:02 AM
Time-series plots:
Full dataset:

Truncated dataset:


Basic statistics:
Full dataset:
Code:
. tabstat merit, s(n mean sd p50 p25 p75 min max) format(%9.1f)

    variable |         N      mean        sd       p50       p25       p75       min       max
-------------+--------------------------------------------------------------------------------
       merit |     494.0     762.1     467.0     643.0     536.0     787.0     312.0    4493.0
----------------------------------------------------------------------------------------------
Applied formulas in previous weeks, potential outliers are days have intra-day merits beyond 160 or 1164.
Code:
. di 787-536
251

. di 251*1.5
376.5

. di 787+376.5
1163.5

. di 536-376.5
159.5
There are 44 outliers in full dataset, in total.
Code:
. count if (merit >= 1164 | merit <= 160) & merit != .
  44
Those days are:
Code:
. list id merit date if (merit >= 1164 | merit <= 160) & merit != .

     +-------------------------+
     |  id   merit        date |
     |-------------------------|
  1. |   3    4493   26jan2018 |
  2. |   4    3489   27jan2018 |
  3. |   5    3188   28jan2018 |
  4. |   6    3799   29jan2018 |
  5. |   7    4192   30jan2018 |
     |-------------------------|
  6. |   8    2820   31jan2018 |
  7. |   9    2545   01feb2018 |
  8. |  10    2568   02feb2018 |
  9. |  11    1867   03feb2018 |
 10. |  12    2167   04feb2018 |
     |-------------------------|
 11. |  13    2077   05feb2018 |
 12. |  14    2308   06feb2018 |
 13. |  15    2141   07feb2018 |
 14. |  16    2141   08feb2018 |
 15. |  17    1448   09feb2018 |
     |-------------------------|
 16. |  18    1747   10feb2018 |
 17. |  19    1442   11feb2018 |
 18. |  20    1331   12feb2018 |
 19. |  21    1579   13feb2018 |
 20. |  22    2513   14feb2018 |
     |-------------------------|
 21. |  23    1991   15feb2018 |
 22. |  24    1411   16feb2018 |
 23. |  25    1608   17feb2018 |
 24. |  26    1289   18feb2018 |
 25. |  27    1403   19feb2018 |
     |-------------------------|
 26. |  28    1169   20feb2018 |
 27. |  29    1266   21feb2018 |
 28. |  30    1279   22feb2018 |
 30. |  32    1409   24feb2018 |
 31. |  33    1186   25feb2018 |
     |-------------------------|
 32. |  34    1382   26feb2018 |
 33. |  35    1326   27feb2018 |
 35. |  37    1333   01mar2018 |
 36. |  38    1696   02mar2018 |
 39. |  41    1245   05mar2018 |
     |-------------------------|
 46. |  48    1354   12mar2018 |
 54. |  56    1322   20mar2018 |
 55. |  57    1227   21mar2018 |
 66. |  68    1233   01apr2018 |
234. | 236    2463   16sep2018 |
     |-------------------------|
235. | 237    1862   17sep2018 |
236. | 238    1294   18sep2018 |
237. | 239    1268   19sep2018 |
426. | 428    1249   27mar2019 |
     +-------------------------+
Only one of them occured in 2019, on 27/3/2019, at 1249 merits circulated in total.

Truncated dataset:
Code:
. tabstat merit, s(n mean sd p50 p25 p75 min max) format(%9.1f)

    variable |         N      mean        sd       p50       p25       p75       min       max
-------------+--------------------------------------------------------------------------------
       merit |     470.0     681.6     233.5     636.5     531.0     760.0     312.0    2463.0
----------------------------------------------------------------------------------------------

Applied same formulas I used in earlier analyses, potential outliers are days have intra-day merits beyond 188 or 1104.
Code:
. di 760-531
229

. di 229*1.5
343.5

. di 760+343.5
1103.5

. di 531-343.5
187.5
There are 28 outliers in total, only four of them occured in 2019, on 09/1/2019, 14/01/2019, 27/3/2019, and 13/5/2019, at 1161, 1127, 1249, and 1150, respectively.
Code:
. count if (merit >= 1104 | merit <=188) & merit != .
  28
List of those 28 outliers in truncated dataset
Code:
. list id merit date if (merit >= 1104 | merit <= 188) & merit != .

     +-------------------------+
     |  id   merit        date |
     |-------------------------|
  1. |  27    1403   19feb2018 |
  2. |  28    1169   20feb2018 |
  3. |  29    1266   21feb2018 |
  4. |  30    1279   22feb2018 |
  6. |  32    1409   24feb2018 |
     |-------------------------|
  7. |  33    1186   25feb2018 |
  8. |  34    1382   26feb2018 |
  9. |  35    1326   27feb2018 |
 11. |  37    1333   01mar2018 |
 12. |  38    1696   02mar2018 |
     |-------------------------|
 15. |  41    1245   05mar2018 |
 17. |  43    1109   07mar2018 |
 22. |  48    1354   12mar2018 |
 24. |  50    1159   14mar2018 |
 25. |  51    1130   15mar2018 |
     |-------------------------|
 30. |  56    1322   20mar2018 |
 31. |  57    1227   21mar2018 |
 42. |  68    1233   01apr2018 |
 43. |  69    1146   02apr2018 |
127. | 153    1138   25jun2018 |
     |-------------------------|
210. | 236    2463   16sep2018 |
211. | 237    1862   17sep2018 |
212. | 238    1294   18sep2018 |
213. | 239    1268   19sep2018 |
325. | 351    1161   09jan2019 |
     |-------------------------|
330. | 356    1127   14jan2019 |
402. | 428    1249   27mar2019 |
449. | 475    1150   13may2019 |
     +-------------------------+
7894  Economy / Gambling / Re: Stake.com | The Most Popular Bitcoin Casino | V2 & New games out now! 👽 on: June 09, 2019, 06:21:50 AM
Unless there is some funny things going on around you account and the coins you deposited in them, they will not ask for KYC and there is never a complaint from any legit users regarding any issues with the site even when they are withdrawing their money and the only issue i remember they had was when there was a DNS hijack and they locked the accounts even with two factor authentication and while contacting the support they took swift action and was able to recover the account.
If there is no signal of abusements on the platform, multi accounts, for example; or there is no huge withdrawal, KYCs won't be required by Stake.com.  There is only one thing should be considered if someone think that they might do huge withdrawals in the future, in such withdrawals, KYCs will be asked, but if they don't want to do KYCs, they should have detailed plans to withdraw their funds gradually, not immidiately at a single withdrawal.
7895  Economy / Gambling / Re: 🚀BitcoinCasino.com Launches Full-Service Online Cryptocurrency Casino on: June 08, 2019, 05:17:54 PM
It is really a big deal in this world of bitcoin, because the purpose of bitcoin exist is to be anonymous for everyone so by giving out the KYC, it will be problem for most of the people right here. What is the point of giving bitcoin from the start if you still exist? If your there is a small chance to let your privacy get out then you will risk it, by getting scam in the first place. So it is better not to submit to any KYC
If someone really don't want to do KYCs and lose their privacy a little bit, they should separate their withdrawals by many rounds, and avoid KYC requirements. There are usually thresholds of withdrawals per day on casinos (as same as on exchanges), but if someone have intention to stay anonymous, they should withdraw gradually whenever they feel their balance exceeds their setup threshold. Managing account like this will help them to avoid KYCs
7896  Other / Meta / Re: [CLUBS] Top Merited-Users Classified into 4 Clubs on: June 08, 2019, 05:05:46 PM
CLUB OF ABOVE 250 MERITS-EARNED

* Part 2

RankUser nameBPIP profileTotal Earned-MeritsTrust
               LegendaryGlobb0Globb0330Trust: 5: -0 / +1
               Seniormadnessteatmadnessteat330Trust: 1: -0 / +1
               Herogawleagawlea329Trust: 0: -0 / +0
               SeniorPlutoskyPlutosky329Trust: 0: -0 / +0
               Coppershasanshasan327Trust: 46: -0 / +9
               Seniorwitcher_sensewitcher_sense327Trust: 2: -0 / +2
               HeroSaint-loupSaint-loup326Trust: 13: -0 / +2
               Seniortranthidungtranthidung325Trust: 0: -0 / +0
               Fulllaszlolaszlo324Trust: 17: -0 / +2
               StaffHalabHalab324Trust: ??: -1 / +5
               Legendaryodolvloboodolvlobo321Trust: 10: -0 / +1
               Seniortrantute2trantute2320Trust: 0: -0 / +0
               SeniorAlyattesLydiaAlyattesLydia316Trust: 0: -0 / +0
               Herobct_ailbct_ail313Trust: 0: -0 / +0
               Coppershorenashorena309Trust: ??: -1 / +13
               LegendaryTECSHARETECSHARE309Trust: 267: -0 / +29
               Seniormithrimmithrim309Trust: 0: -0 / +0
               Legendary1Referee1Referee307Trust: 40: -0 / +4
               Heromstfprcnmstfprcn303Trust: 0: -0 / +0
               Seniorkawetsriyantokawetsriyanto301Trust: 0: -0 / +0
               LegendaryDooMADDooMAD301Trust: 0: -0 / +0
               Seniorelda34belda34b300Trust: 0: -0 / +0
               CopperLimx DevLimx Dev298Trust: 30: -0 / +3
               DonatorClaymoreClaymore295Trust: 0: -0 / +0
               Herotonychtonych293Trust: 10: -0 / +1
               Legendaryarulberoarulbero292Trust: 14: -0 / +2
               HeroteeGUMESteeGUMES290Trust: 94: -0 / +10
               Herosquattersquatter286Trust: 0: -0 / +0
               Herofigmentofmyassfigmentofmyass286Trust: 0: -0 / +0
               Seniorkhaled0111khaled0111286Trust: 0: -0 / +0
               StaffOmegaStarScreamOmegaStarScream284Trust: 40: -0 / +5
               SeniorXyneriseXynerise284Trust: 0: -0 / +0
               Seniorgoldkingcoinergoldkingcoiner284Trust: 0: -0 / +0
               SeniorRichDanielRichDaniel283Trust: -2: -1 / +0
               SeniorJSRAWJSRAW280Trust: 2: -0 / +1
               Legendary600watt600watt276Trust: 14: -0 / +2
               Legendaryby rallierby rallier276Trust: 0: -0 / +0
               Seniorvlad230vlad230276Trust: 0: -0 / +0
               SeniorNestadeNestade274Trust: 0: -0 / +0
               SeniorTrofoTrofo274Trust: 0: -0 / +0
               SeniorChiBitCTyChiBitCTy273Trust: 168: -0 / +19
               HeroWind_FURYWind_FURY273Trust: 0: -0 / +0
               Seniorcrypmikecrypmike271Trust: 0: -0 / +0
               Seniorkirreev070kirreev070271Trust: 0: -0 / +0
               Heroduesoldiduesoldi269Trust: 10: -0 / +2
               Seniorleonelloleonello268Trust: 0: -0 / +0
               HeroBTCMILLIONAIREBTCMILLIONAIRE267Trust: 17: -0 / +2
               HerojohhnyUAjohhnyUA266Trust: 0: -0 / +0
               FullS_TherapistS_Therapist266Trust: -8: -3 / +0
               SeniorJuliya_DJuliya_D266Trust: 2: -0 / +2
               Fullcestmoicestmoi265Trust: 3: -0 / +2
               SeniorBitcoinTurkBitcoinTurk264Trust: 0: -0 / +0
               Fullzentdexzentdex264Trust: 0: -0 / +0
               Legendaryjbreherjbreher262Trust: -2: -1 / +0
               LegendaryMitchellMitchell262Trust: 370: -0 / +37
               Herosquatz1squatz1260Trust: 0: -0 / +0
               Seniorbaba0000000000baba0000000000260Trust: 10: -0 / +1
               Herozonefloorzonefloor259Trust: 0: -0 / +0
               Heroalex bondalex bond258Trust: 0: -0 / +0
               HeroAerys2Aerys2257Trust: 20: -0 / +2
               LegendaryNotFuzzyWarmNotFuzzyWarm257Trust: 0: -0 / +0
               Copperjackgjackg256Trust: 20: -0 / +2
               SeniorHellmouth42Hellmouth42255Trust: 0: -0 / +0
               Seniorathanz88athanz88255Trust: 0: -0 / +0
               LegendaryJimboTorontoJimboToronto253Trust: 0: -0 / +0
               SeniorSpazzerSpazzer252Trust: 54: -0 / +6
               HeroRuSS512RuSS512251Trust: -8: -3 / +0
               Herosaulzaentssaulzaents251Trust: -4: -2 / +0
               LegendaryPamoldarPamoldar251Trust: 2: -0 / +1
               LegendaryKakmakrKakmakr251Trust: 0: -0 / +0
               Staffdbshckdbshck251Trust: 9: -0 / +3


Notes:
- Hero: Hero Member
- Senior: Senior Member
- Copper: Copper Member
- banned: banned accounts.



Source:
https://loyce.club/Merit/tranthidung/2019-06-08_Sat_10.24h.txt
7897  Other / Meta / Re: [CLUBS] Top Merited-Users Classified into 4 Clubs on: June 08, 2019, 05:01:12 PM
CLUB OF ABOVE 250 MERITS-EARNED

* Part 1

RankUser nameBPIP profileTotal Earned-MeritsTrust
               LegendaryBitcoinPennyBitcoinPenny493Trust: 382: -0 / +41
               Herobitservebitserve488Trust: 5: -0 / +1
               Herod_eddied_eddie488Trust: 0: -0 / +0
               LegendaryTorqueTorque487Trust: 0: -0 / +0
               Legendaryzazarbzazarb482Trust: ??: -1 / +24
               Legendaryd5000d5000479Trust: 0: -0 / +0
               HeroCoin-1Coin-1479Trust: 0: -0 / +0
               Fullpitipawnpitipawn478Trust: -8: -3 / +0
               Seniorfillipponefillippone476Trust: 5: -0 / +1
               HeroBTCforJoeBTCforJoe473Trust: 10: -0 / +1
               LegendaryFoxpupFoxpup473Trust: 1: -0 / +1
               Seniorlovesmayfamilislovesmayfamilis471Trust: 10: -0 / +4
               Seniortvplus006tvplus006459Trust: 8: -0 / +3
               HeroMatthias9515Matthias9515450Trust: 0: -0 / +0
               Seniorcryptovigicryptovigi449Trust: 0: -0 / +0
               HeroTheQuinTheQuin449Trust: 0: -0 / +0
               Herohugeblackhugeblack447Trust: 20: -0 / +2
               StaffWelshWelsh446Trust: 40: -0 / +4
               Legendaryfranky1franky1442Trust: -8: -3 / +0
               Herochimkchimk437Trust: 1: -0 / +2
               HeronullCoinernullCoiner436Trust: 0: -0 / +0
               VIPHalHal432Trust: 10: -0 / +1
               Legendarysidehacksidehack432Trust: 60: -0 / +6
               Heromjglqwmjglqw425Trust: 0: -0 / +0
               Herovit05vit05423Trust: 0: -0 / +0
               Heroryzaaditryzaadit422Trust: 0: -0 / +0
               Heroeddie13eddie13418Trust: 10: -0 / +1
               Senioresmanthraesmanthra417Trust: 5: -0 / +1
               HeroAdolfinWolfAdolfinWolf413Trust: 0: -0 / +0
               LegendaryEcuaMobiEcuaMobi411Trust: 165: -0 / +17
               LegendaryDannyHamiltonDannyHamilton404Trust: 150: -0 / +15
               Senioranonymousmineranonymousminer401Trust: 175: -0 / +25
               Heroromanornrromanornr400Trust: 30: -0 / +3
               Legendarytmfptmfp399Trust: 45: -0 / +5
               Legendarymindrustmindrust399Trust: 0: -0 / +0
               Seniornc50lcnc50lc395Trust: 0: -0 / +0
               Herobuwaytressbuwaytress394Trust: 22: -0 / +3
               HeroTheFuzzStoneTheFuzzStone387Trust: 12: -0 / +2
               Heroaundroidaundroid387Trust: 0: -0 / +0
               LegendaryElwarElwar384Trust: 0: -0 / +0
               Seniorxenon131xenon131383Trust: 0: -0 / +0
               Seniorexplorderexplorder378Trust: 0: -0 / +0
               LegendaryLesbian CowLesbian Cow377Trust: 338: -0 / +37
               LegendaryQuestionAuthorityQuestionAuthority375Trust: 0: -0 / +0
               Seniorr1s2g3r1s2g3374Trust: 0: -0 / +0
               Seniordeeperxdeeperx373Trust: -2: -1 / +0
               Heroaliashrafaliashraf372Trust: 0: -0 / +0
               Copperkillyou72killyou72371Trust: 102: -0 / +12
               Legendaryseoincorporationseoincorporation369Trust: 0: -0 / +0
               Herowwzsockiwwzsocki368Trust: 0: -0 / +0
               SeniorHeisenberg_HunterHeisenberg_Hunter366Trust: 1: -0 / +1
               SeniorTytanowy JanuszTytanowy Janusz364Trust: 0: -0 / +0
               Seniormdayonlinermdayonliner362Trust: -6: -3 / +2
               Heropoptoppoptop359Trust: 0: -0 / +0
               G.Mod.mprepmprep357Trust: 80: -0 / +8
               Legendarypugmanpugman353Trust: 0: -0 / +0
               LegendaryPaashaasPaashaas352Trust: 0: -0 / +0
               HeroKryptowerkKryptowerk351Trust: 142: -0 / +23
               SeniorAverageGlabellaAverageGlabella351Trust: 0: -0 / +0
               HeroRaja_MBZRaja_MBZ348Trust: 0: -0 / +0
               Seniormfort312mfort312348Trust: 0: -0 / +0
               Legendaryibmineribminer347Trust: 40: -0 / +4
               Seniorcabalism13cabalism13347Trust: 1: -0 / +1
               LegendarycAPSLOCKcAPSLOCK341Trust: 0: -0 / +0
               Seniorigor72igor72341Trust: 0: -0 / +0
               Herosabotag3xsabotag3x340Trust: 10: -0 / +1
               SeniorScheedeScheede337Trust: 0: -0 / +0
               LegendaryHagssFINHagssFIN335Trust: 30: -0 / +3
               LegendaryRHavarRHavar334Trust: 34: -0 / +5
               Seniorpaxmaopaxmao333Trust: 0: -0 / +0


Notes:
- G. Mod. : Global Moderator
- Hero: Hero Member
- Senior: Senior Member
- Copper: Copper Member
- banned: banned accounts.

deeperx, and lovesmayfamilis: already unbanned!


Source:
https://loyce.club/Merit/tranthidung/2019-06-08_Sat_10.24h.txt
7898  Other / Meta / Re: [CLUBS] Top Merited-Users Classified into 4 Clubs on: June 08, 2019, 04:57:12 PM
CLUB OF ABOVE 500 MERITS-EARNED

RankUser nameBPIP profileTotal Earned-MeritsTrust
               Senior1miau1miau977Trust: 9: -0 / +1
               Heroiasenkoiasenko974Trust: 20: -0 / +3
               LegendaryBobLawblawBobLawblaw926Trust: 11: -0 / +2
               HeroSteamtymeSteamtyme918Trust: 17: -0 / +2
               Legendarymarlborozamarlboroza905Trust: 63: -0 / +10
               Heroroycilikroycilik870Trust: 11: -0 / +4
               Seniormikeywithmikeywith862Trust: 4: -0 / +1
               HeroToxic2040Toxic2040851Trust: 0: -0 / +0
               Coppermu_enricomu_enrico810Trust: 0: -0 / +0
               Herobob123bob123805Trust: 9: -0 / +1
               LegendarySaltySpitoonSaltySpitoon804Trust: 1: -1 / +21
               HeroAlex_SrAlex_Sr797Trust: 8: -0 / +3
               SeniorICOEthicsICOEthics790Trust: 69: -0 / +16
               Seniortheyoungmillionairetheyoungmillionaire786Trust: 20: -0 / +4
               LegendaryDarkStar_DarkStar_784Trust: 256: -0 / +30
               CopperLutpinLutpin778Trust: 0: -1 / +32
               LegendaryJayJuanGeeJayJuanGee777Trust: 11: -0 / +2
               Coppernulliusnullius776Trust: ??: -1 / +3
               LegendaryETFbitcoinETFbitcoin776Trust: 3: -0 / +1
               LegendaryTryNinjaTryNinja773Trust: 0: -0 / +0
               SeniorHusna QAHusna QA760Trust: 5: -0 / +1
               Legendaryjojo69jojo69757Trust: 0: -0 / +0
               Herokenzawakkenzawak756Trust: 8: -0 / +4
               HeroBitCryptexBitCryptex742Trust: 0: -0 / +0
               CopperLFC_BitcoinLFC_Bitcoin738Trust: 66: -0 / +10
               Heropandukelana2712pandukelana2712738Trust: 0: -0 / +0
               Legendaryphilipma1957philipma1957727Trust: 201: -0 / +21
               CopperCoolcryptovatorCoolcryptovator721Trust: 32: -0 / +8
               Herobitmoverbitmover715Trust: 0: -0 / +0
               Legendarygentlemandgentlemand712Trust: 1: -0 / +1
               Legendaryinfofrontinfofront701Trust: 0: -0 / +0
               Legendarynutildahnutildah701Trust: 0: -0 / +1
               LegendaryTheNewAnon135246TheNewAnon135246694Trust: 259: -0 / +27
               DonatorOgNastyOgNasty690Trust: 28: -5 / +71
               Copperminerjonesminerjones681Trust: 942: -0 / +101
               LegendaryCarlton BanksCarlton Banks678Trust: 20: -0 / +2
               HeroPHI1618PHI1618678Trust: 0: -0 / +0
               Legendarypooya87pooya87670Trust: 10: -0 / +1
               Herotaikuri13taikuri13648Trust: 5: -0 / +1
               Seniormorvillz7zmorvillz7z638Trust: 2: -0 / +1
               StaffXal0lexXal0lex638Trust: 5: -0 / +1
               Legendaryyoggyogg618Trust: 203: -0 / +25
               HeroCoding EnthusiastCoding Enthusiast616Trust: 0: -0 / +0
               Heromole0815mole0815615Trust: 16: -0 / +3
               CopperLeGauloisLeGaulois610Trust: 30: -0 / +3
               CopperQuicksellerQuickseller606Trust: -8176: -13 / +16
               Legendarymocacinnomocacinno604Trust: 0: -0 / +0
               Heroascheasche602Trust: 54: -0 / +9
               StaffFlying HellfishFlying Hellfish599Trust: 32: -0 / +6
               HeroVeleorVeleor592Trust: 8: -0 / +2
               HeroGoran_Goran_591Trust: 5: -0 / +1
               SeniorVB1001VB1001578Trust: 0: -0 / +0
               SeniorDireWolfM14DireWolfM14574Trust: 24: -0 / +5
               G.Mod.hilariousandcohilariousandco564Trust: 158: -0 / +18
               Legendaryactmynameactmyname561Trust: 127: -0 / +13
               Legendarybones261bones261557Trust: 10: -0 / +3
               LegendaryLafuLafu555Trust: 52: -0 / +6
               LegendaryHeRetiKHeRetiK552Trust: 0: -0 / +0
               LegendaryPmalekPmalek545Trust: 0: -0 / +0
               Legendarystompixstompix536Trust: 0: -0 / +0
               SeniorGameKyuubiGameKyuubi534Trust: 5: -0 / +1
               Legendaryyahoo62278yahoo62278523Trust: 128: -0 / +14
               Copperbill gatorbill gator520Trust: -499: -9 / +13
               SeniorCryptopreneurBrainbossCryptopreneurBrainboss510Trust: 0: -0 / +0
               SeniorArtemis3Artemis3508Trust: 0: -0 / +0
               Herosnccsncc506Trust: 0: -0 / +0
               HeroSmart manSmart man501Trust: 0: -0 / +0


Notes:
- G.Mod.: Global Moderator
- Hero: Hero Member
- Senior: Senior Member
- Copper: Copper Member


Source:
https://loyce.club/Merit/tranthidung/2019-06-08_Sat_10.24h.txt
7899  Other / Meta / Re: [CLUBS] Top Merited-Users Classified into 4 Clubs on: June 08, 2019, 04:54:19 PM
CLUB OF ABOVE 1000 MERITS-EARNED

RankUser nameBPIP profileTotal Earned-MeritsTrust
               LegendaryThe PharmacistThe Pharmacist1957Trust: 193: -0 / +22
               Heroo_e_l_e_oo_e_l_e_o1905Trust: 8: -0 / +2
               Foundersatoshisatoshi1772Trust: 228: -0 / +28
               LegendaryLast of the V8sLast of the V8s1668Trust: 9: -0 / +3
               Legendaryhilariousetchilariousetc1590Trust: 28: -0 / +3
               Staffachow101achow1011430Trust: 40: -0 / +4
               Staffgmaxwellgmaxwell1278Trust: 140: -0 / +14
               LegendaryVodVod1243Trust: 212: -0 / +27
               Seniorabhiseshakanaabhiseshakana1155Trust: 4: -0 / +2
               Legendaryxhomerx10xhomerx101154Trust: 18: -0 / +3
               LegendaryJet CashJet Cash1150Trust: 34: -0 / +4
               HeroHairyMaclairyHairyMaclairy1138Trust: 8: -0 / +2
               Donatorqwkqwk1106Trust: 134: -0 / +15
               HeroPiggyPiggy1091Trust: 5: -0 / +1
               Herokrogothmanhattankrogothmanhattan1091Trust: 440: -0 / +51
               LegendaryHhampuzHhampuz1080Trust: 395: -0 / +53
               LegendaryHCPHCP1070Trust: 20: -0 / +3
               Heroxtraelvxtraelv1054Trust: 25: -0 / +3
               LegendaryLaudaLauda1036Trust: 315: -0 / +33
               Herojoniboinijoniboini1034Trust: 0: -0 / +0
               Herocoinlocket$coinlocket$1032Trust: 27: -0 / +5
               LegendaryTMANTMAN1027Trust: 241: -0 / +27


Notes:
- Hero: Hero Member
- Senior: Senior Member


Source:
https://loyce.club/Merit/tranthidung/2019-06-08_Sat_10.24h.txt
7900  Other / Meta / Re: [CLUBS] Top Merited-Users Classified into 4 Clubs on: June 08, 2019, 04:41:09 PM
Update:
Finally, the Big Four was broken, with the appearance of micgoossens

CLUB OF ABOVE 2000 MERITS-EARNED


RankUser nameBPIP profileTotal Earned-MeritsTrust
               Administratortheymostheymos4738Trust: 212: -0 / +22
               LegendaryLoyceVLoyceV2961Trust: 126: -0 / +16
               Legendarysuchmoonsuchmoon2278Trust: 76: -0 / +11
               HeroDdmrDdmrDdmrDdmr2198Trust: 8: -0 / +2
               Heromicgoossensmicgoossens2030Trust: 71: -0 / +15


Notes:
- Hero: Hero Member


Source:
https://loyce.club/Merit/tranthidung/2019-06-08_Sat_10.24h.txt
Pages: « 1 ... 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 [395] 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 ... 464 »
Powered by MySQL Powered by PHP Powered by SMF 1.1.19 | SMF © 2006-2009, Simple Machines Valid XHTML 1.0! Valid CSS!